Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.

INTRODUCTION

In the late 1800s, the French scientist Charles-Marie Benjamin Rouget described a population of contractile cells in the capillaries, which were named after him [1]. Fifty years later, Karl Wilhelm Zimmermann renamed them pericytes because they were primarily located around microvessels [2]. Microvascular pericytes have long projections that encircle the vessel wall in almost all tissues and organs [3]. They communicate with endothelial cells along the length of the vessel by physical contact and paracrine signalling [4].

Until recently, light and electron microscopy were the only techniques able to visualize them, and pericytes distinct from vascular smooth muscle cells, perivascular fibroblasts, juxtavascular microglia and other perivascular cells could not be identified precisely, resulting in the still widely held notion that their physiological function is limited to supporting microvessel stability.

In previous years, however, pericytes have been isolated successfully from a variety of organs and established in tissue culture [5,6]. Rapidly expanding insights into their physiological functions have attracted the attention of many research groups. Approaches that combine genetic lineage tracing, anatomical location and expression of surface markers now enable a clearer understanding of pericytes’ varying roles in health and disease.

PHYSIOLOGICAL FUNCTIONS

Previous studies have shown that, in addition to physically stabilizing vessels, pericytes regulate blood flow [79]. They participate in vascular development, maturation, remodelling, architecture and permeability [1014]. They collaborate with astrocytes to maintain the functional integrity of the blood–brain barrier [1525]. Pericytes affect blood coagulation [2628] and immune function by regulating lymphocyte activation [2932]. Evidence for phagocytic properties has been reported [3337]. We invite the reader to consult recent publications that detail these pericyte functions [3843]. In the present review, we will discuss studies that identify pericytes as stem cells that participate in tissue formation and regeneration.

HETEROGENEITY

Pericytes are heterogeneous in terms of phenotype, distribution and origin [4345]. In 1923, Zimmerman was the first to distinguish three varieties according to their location in the blood vessels: pre-capillary, true-capillary and post-capillary [2]. Pre-capillary pericytes have circular branches that wrap themselves around the vessel and express varying amounts of α-smooth muscle actin (αSMA) [46]. True-capillary pericytes are spindle-shaped, highly elongated, extending mainly along the vessels’ long axis, and have short secondary processes. They do not express αSMA protein [46]. Post-capillary pericytes cover the abluminal surface of post-capillaries and are shorter and stellate.

Pericyte coverage of blood vessels also differs by organ. The ratio of pericytes to endothelial cells is approximately 1:1 in the central nervous system (CNS) and retina, 1:10 in the lung and skin and only 1:100 in skeletal muscle [47]. This variation may be linked to the tissue's function. One study proposed that the more pericytes, the higher the blood pressure in the organ, and the greater blood vessel control [47], which could explain why more pericytes surround larger diameter vessels [44].

Pericytes also differ in their embryonic origin. Lineage tracing studies indicate that pericytes in the cephalic region are of neuroectodermal origin [48]. In most other organs, pericytes derive from the mesoderm; specifically, the sclerotomal compartment [4956]. However, given their heterogeneity within and between tissues, their exact origin remains unclear.

The strategy used to identify pericytes combines their anatomical location in very close relationship between blood vessel endothelial cells and marker expression. However, not all pericytes express all the markers, nor are all markers found exclusively in pericytes. Therefore, various markers and cell location must both be identified to distinguish pericytes from other cells, including fibroblasts. For example, pericytes and fibroblasts express platelet-derived growth factor (PDGF) receptor-β (PDGFRβ) [57,58], but pericytes do not express fibroblast-specific protein 1 (FSP1) [59] or scleraxis [6062]. Thus, PDGFRβ+ cells that express FSP1 and/or scleraxis are fibroblasts, and those that do not and are located around CD31+ blood vessels are pericytes. Markers used to identify pericytes include αSMA [63], PDGFRβ [14,64], aminopeptidase N (CD13) [65], nerve/glial antigen-2 (NG2) proteoglycan, also called chondroitin sulfate proteoglycan 4 (CSPG4) [66], and many others [67]. Their expression profiles also confirm pericyte heterogeneity. Pericytes localized on venules express desmin and αSMA, whereas those on capillaries express desmin but are usually negative for αSMA [67,68]. The ATP-sensitive potassium-channel Kir6.1 is undetectable in pericytes in the skin and heart but highly expressed in brain pericytes [69]. Spinal cord pericytes that express the glutamate aspartate transporter (Glast) differ from those that express desmin and αSMA [70]. Two distinct types of nestin–GFP+ pericytes express either high or low levels of GFP in the bone marrow [70]. Bone marrow sinusoid-associated leptin receptor (LEPR)+ pericytes are distinct from LEPR pericytes [71]. Skin NG2 and NG2+ pericytes have been described [72]. We distinguished two populations of pericytes in the skeletal muscle based on intron-II–nestin–GFP expression [73]. Their roles in specific tissues are described below.

Pericytes are relatively undifferentiated connective tissue cells associated with small blood vessel walls. Their cross-talk with other cells promotes tissue survival [74]. They are similar to mesenchymal stem cells (MSCs) and can be obtained from several organs [75]. Because blood vessels are distributed in almost all organs, pericytes are thought to be MSCs [75,76], and they locate within the niche [77] and share markers in vivo and in vitro [76] with MSCs. Moreover, cell isolation followed by long-term culture provides compelling evidence that the origin of MSCs is perivascular [5,7888]. Pericytes may differentiate along distinct lineages depending on their location and physiological state [5,73,7680,82113]. They have been shown to improve heart function following myocardial infarction in animal models [114,115] and to form skeletal muscle [80,85], dental tissues [87,116], follicular dendritic cells [117], fat [85], cartilage [118] and bone [119]. They accelerate wound healing [120] and contribute to fibrous tissue formation [121,122]. Their role in forming and stabilizing engineered blood vessels [123] supports their use in vascular therapy. Pericytes can be reprogrammed to develop neuronal cells [91]. Finally, they may be involved in tissue regeneration as ‘niche cells’ for specialized stem cells, as documented for haematopoiesis [71,124126].

Below we will examine recent reports on pericytes’ role in tissue regeneration and regenerative medicine.

PERICYTES AND MYOGENESIS

Previous studies indicate that pericytes contribute to skeletal muscle formation [126a]. After xenographic transplantation, both freshly sorted and long-term cultured pericytes colonize host muscle, spontaneously fuse together with myoblasts to form myotubes [88], and help to regenerate muscle in cases of acute injury or chronic muscle necrotic disease, such as muscular dystrophy [88]. Some researchers propose that they generate satellite cells, the bona fide muscle stem cells. After muscle injury, a small percentage of transplanted pericytes localize beneath the myofibre's basal lamina and express Pax7, indicating that they can occupy the satellite cell niche in skeletal muscle [80]. This myogenic potential can be generalized to pericytes residing in other tissues [85]. Since they can be cultured in vitro, pericytes are promising candidates for future cell-based therapies to treat muscular dystrophies [127].

Recently we reported two bona fide pericyte subpopulations, type 1 (nestin–GFP/NG2+) and type 2 (nestin–GFP+/NG2+), in the skeletal muscle interstitium. They express the pericyte markers NG2, PDGFRβ and CD146, and are associated with blood vessels. Type 2, but not type 1, forms myotubes in culture. We demonstrated that after injury, only type 2 pericytes participate in muscle regeneration, forming myofibres in vivo [128]. Whether transplanting type 2 pericytes will improve physiological performance and skeletal muscle repair and regeneration remains to be elucidated.

Similar to what has been shown for other potential cell therapies [129131], type 2 pericytes’ regenerative capacity is affected by the host microenvironment; after injection in older host animals, they generate fewer and smaller myofibres [62] and any future therapies will have to consider tissue context. Recombination-based lineage-tracing technologies are helping to determine the contribution of type 2 pericytes and other cell types to myogenesis, but tracking pericyte fate in vivo will require the discovery of new markers that are expressed exclusively in a pericyte subpopulation.

Future studies must also determine whether the depletion of type 2 pericytes compromises tissue regeneration. Without satellite cells, muscle regeneration fails [132135], and their interaction with endothelial cells [136] and connective tissue fibroblasts [134] is necessary for efficiency. Dying satellite cells release factors that may directly compromise pericytes’ myogenic capacity. Pericytes may also require physical contact with satellite cells to induce muscle regeneration. Thus, ablating type 2 pericytes will be crucial to determining their role in muscle regeneration.

PERICYTES AND ADIPOGENESIS

Richardson et al. [137] showed that rat adipose tissue pericytes can convert into adipocytes in situ in response to thermal injury induced by an incandescent wire. These morphological observations led to the hypothesis that pericytes can be adipocyte progenitors [138] but do not constitute definitive proof. A close relationship between vascular growth and adipogenesis in vivo [139,140] suggests that vascular cells may function as adipocyte progenitors. More recently, pericytes cultured in adipogenic conditions accumulated lipid droplets in their cytoplasm and expressed peroxisome-proliferator-activated receptor-γ (PPARγ), an adipocyte-specific transcription factor. This result was also described in vivo but not for endothelial cells [118]. Ectopic fat production by vascular cells has been associated with atherosclerosis [141].

Early studies revealed that new adipocytes form along the vasculature [142], linking vascularization and fat formation [143], and suggesting that adipogenic progenitors reside in the perivascular niche [144]. Findings from several studies strongly suggest that adipogenic progenitors are perivascular [86,145147]. A 2008 study showed that vessel-associated PPARγ+ cells express the pericyte markers PDGFRβ, NG2 and αSMA. Using the inducible genetic lineage-tracing system (PdgfRβ-CRE/Rosa-LacZ mice), the authors demonstrated that PDGFRβ+ cells form adipocytes after transplantation [148]. Pericytes from various tissues differentiate into fat cells; for example, in skin and skeletal muscle cells when cultured under adipogenic conditions [85,149]. In a recent study [128], we reported that in skeletal muscle, adipogenic potential is restricted to type 1 pericytes, and only type 1 pericytes express the adipogenic progenitor marker PDGFRα. We also found that unlike type 2, type 1 pericytes cannot form muscle cells in response to muscle injury. In contrast, they contribute to fat infiltration in diseased skeletal muscle in such disorders, as obesity, dystrophies and aging [128]. As other cells are also involved in fat formation [59,150157], the contribution of pericytes to adipose tissue accumulation must be quantified. So far, it has been described only in skeletal muscle. Whether they contribute to fat deposits in other organs, such as blood vessels, leading to atherosclerosis, is not known. Furthermore, monitoring the relative abundance of pericyte subtypes over time will clarify their correlation with increasing fat deposition in skeletal muscle with aging [158161]. Future mechanistic studies should reveal how to block adipogenic (type 1) pericytes without affecting myogenic (type 2) pericytes.

PERICYTES AND NEUROGENESIS

The brain is one of the most vascularized organs [162]. Neurogenic cells are located very close to blood vessels, wrapping them in intricate processes [163165]. Periventricular blood vessels develop at the onset of cortical neurogenesis [166]. Pericytes have a higher density in the brain compared with other organs [167] and play several roles in the CNS microenvironment; for example, they produce neurotrophins that provide neuroprotection under hypoxic conditions [168].

Pericytes migrate in response to traumatic brain injury [169]. The first evidence of their neurogenic potential was a study in the monkey hippocampus that showed neural differentiation of pericytes after ischaemia [170]. Rat brain primary pericytes can generate neurospheres [93,94] in the neuronal, astrocytic and oligodendrocytic lineages, and the process is faster in co-culture with endothelial cells [93] supporting the suggestion that endothelial cells provide trophic support to neurogenic activity [164]. A more recent study reported this neurogenic potential in vitro in human brain-derived pericytes [171].

Pericytes isolated from cerebral cortex can be converted into postmitotic functional neurons in vitro by direct cell reprogramming [91]. We do not know whether they can be directly reprogrammed in vivo, as recently shown for glial cells [172174]. To confirm the apparent neural progenitor activity of pericytes throughout the CNS in response to ischaemia in vivo [107], genetic cell tracking will be required. Note also that non-CNS pericytes from the aorta [175] and fat [106] can be induced to neural differentiation [106,175].

In our recent work, we found that not all skeletal muscle pericytes can differentiate into neural progenitors under the same culture conditions. Type 1 pericytes generate α-SMA+ pericytes but not neural cells. In contrast, type 2 pericytes generate neural progenitors that resemble brain NG2−glia in optimized culture conditions; when cultured alone, they become α-SMA+ pericytes and do not form neural cells [73]. The counterpart of NG2−glia cells in skeletal muscle are Schwann cells, but whether pericytes can form Schwann cells is not known. Future studies will explore whether a particular pericyte subpopulation is the source of myelinating and/or nonmyelinating Schwann cells.

Other questions include whether organs apart from skeletal muscle have pericytes that cannot be induced to neural lineage; whether only type 2 pericytes in the CNS have neurogenic potential; and whether, in vivo, endogenous pericytes transform into neuron, astrocyte or oligodendrocyte progenitors in response to neurodegenerative disorders or trauma. Some studies indicate that although one pericyte subpopulation contributes to scar formation, another contributes to neural regeneration in the injured spinal cord [70]. Determining the exact functions of pericyte subpopulations may provide new cellular targets for pharmacological manipulation and new ways to improve repair in several CNS diseases.

PERICYTES AND TISSUE FIBROSIS

Previous findings suggest that pericyte participation in fibrosis is organ-dependent. In the liver, pericytes are also called Ito or hepatic stellate cells and reside in close contact with vascular endothelial cells [176,177]. Early studies indicating that they play a central role in hepatic fibrosis by producing collagen [178,179] were confirmed using collagen–GFP transgenic mice [180] and in a recent lineage-tracing study [181]. The authors generated pericyte-specific, lecithin-retinol acyltransferase (Lrat) Cre mice, which marked nearly all pericytes. They confirmed that in animal models of cholestatic, toxic and fatty liver disease, pericytes are the main source of collagen [181]. Additionally, a recent study reported that αv integrin depletion in liver pericytes protected mice from liver fibrosis [182]. Whether a specific pericyte subpopulation is responsible for hepatic fibrous tissue formation remains unknown.

In skeletal muscle, PDGFRβ+/NG2+ pericytes participate in the formation of a fibrotic scar after acute injury as shown by fate-mapping using an inducible tetracycline transactivator-based system [121]. Recently, we showed that skeletal muscle type 1, but not type 2, pericytes are fibrogenic when exposed to transforming growth factor β (TGFβ) in culture, and in vivo, only type 1 produce collagen, which increases fibrous tissue deposition in the skeletal muscle of old mice.

Although pericytes have been associated with regeneration, blocking the whole population would prevent tissue repair after injury. We must quantify the endogenous pericyte contribution to fibrous tissue formation relative to other fibrogenic cells (e.g., tissue resident fibroblasts) in skeletal muscle with aging. Recombination-based lineage tracing and ablation of type 1 pericytes may help to find the answer, but so far the only marker we found differentially expressed in pericyte subpopulations is nestin–GFP. Tracking pericyte fate or ablating a subtype in vivo will require the discovery of markers that are expressed in only one subtype, perhaps using single-cell microarrays to characterize their specific expression profiles. Future studies might target type 1 pericytes to reduce skeletal muscle fibrosis in old mammals.

In contrast with the dominant role of pericytes in liver and skeletal muscle fibrosis, their contribution in kidney, lung and spinal cord remains controversial [57,70,183186]. In the kidney, their role is under active investigation and debate. Fibrogenic cells were reported to expand from a perivascular location in an accelerated model of angiotensin II-induced renal fibrosis approximately a decade ago [187]. A previous study reported that pericytes and perivascular fibroblasts in the kidney expand after induction of renal fibrosis using type 1 collagen–FP mice [188]. The group concluded that the major source of fibrogenic cells are interstitial pericytes [184] using a Cre− reporter strategy to label renal epithelial cells or pericytes in mice subjected to unilateral ureteral obstruction and ischemia-reperfusion injury models.

In sharp contrast, another group reported that pericytes do not participate in kidney fibrosis. The authors created a mouse in which the pericyte-marker promoter controlled thymidine kinase expression to ablate pericytes in response to ganciclovir administration. Following unilateral ureteral obstruction, the grade of fibrosis did not change, suggesting that pericytes do not form renal fibrous tissue [183]. In agreement with this report, we found that only type 1 pericytes accumulate in the kidney fibrotic area after unilateral ureteral obstruction, but they do not produce collagen (A. Birbrair, T. Zhang, D. C. Files, S. Mannava, T. Smith, Z. M. Wang, M. L. Messi, A. Mintz and O. Delbono, unpublished work). Cell depletion, mouse strain, genetic tagging and model-specific differences may explain some discrepant conclusions about the role of pericytes in kidney fibrosis.

In the lungs, pericytes expressing NG2 and PDGFRβ proliferate after bleomycin-induced fibrosis [186]. That study suggests that pericytes should be excluded as the origin of fibrogenic cells [186], but a recent fate-mapping report showed that FoxD1+ pericytes contribute to pulmonary fibrogenesis [185]. This apparent discrepancy could be explained by the first study's use of inducible NG2−CreER transgenic mice. The recombination efficiency was low, and thus the analyses did not include the whole pericyte population. In a small percentage, we found that type 1, but not type 2, pericytes contribute to collagen production in the lungs (A. Birbrair, T. Zhang, D. C. Files, S. Mannava, T. Smith, Z. M. Wang, M. L. Messi, A. Mintz and O. Delbono, unpublished work).

In the spinal cord, pericytes expressing Glast were previously found to participate in the formation of scar tissue after injury. The authors performed contusive injury in tamoxifen-inducible Glast−CreER mice. Following the dorsal funiculus incision, the number of Glast+ pericytes increased and formed the core of the scar [70]. However, whether the cells identified as pericytes are a subset of glial cells and directly responsible for fibrosis is unknown [189191]. The use of a NG2/collagen-specific transgenic reporter mouse may clarify this ambiguity. Soderblom et al. [57] determined that, unlike perivascular fibroblasts, NG2+ pericytes are not major collagen-producing cells after contusive spinal cord injury. We found that type 1, but not type 2, pericytes increase and accumulate at the injured site 2 weeks after spinal cord and brain contusion. Type 1 pericytes differ from collagen-producing PDGFRβ+ cells in the injured cortex (A. Birbrair, T. Zhang, D. C. Files, S. Mannava, T. Smith, Z. M. Wang, M. L. Messi, A. Mintz and O. Delbono, unpublished work), suggesting that their role in tissue repair after CNS injury differs [57,70].

In the heart, pericytes are the second largest cellular population [192]. Experimentally, their exact pathogenic role in myocardial fibrosis is unknown, but a review article suggests that it may be significant [193]. We discovered that type 1 pericytes are recruited and accumulated in the interstitial space surrounding fibrotic tissue in the ischaemic zone but do not contribute to tissue fibrosis (A. Birbrair, T. Zhang, D. C. Files, S. Mannava, T. Smith, Z. M. Wang, M. L. Messi, A. Mintz and O. Delbono, unpublished work). Whether proliferation and migration of type 1 pericytes are important in the pathogenesis of heart fibrosis has not been studied.

Similar studies investigating the relationship between pericyte subtypes and cancer-activated fibroblasts in the tumour micro-environment are needed. To what extent pericytes contribute to tissue fibrosis, especially in humans, remains an open question. All the present studies were conducted in animal models. If we can unravel pericyte subpopulation mechanisms in human tissues, we may be able to design organ-specific antifibrotic therapies.

PERICYTES AND ANGIOGENESIS

Pericytes play a leading role in angiogenesis [194], promoting endothelial cell survival and migration [68,195198]. Without them, capillaries rupture at late gestation [14], and nascent vessels regress [199]. In adults, most vessels are quiescent; nevertheless, pericytes participate in angiogenesis during wound healing [200] and tumour growth [201]. For this reason, they have been proposed as targets for pharmacological therapy, and since they are heteregoneous, and subsets have different functions, targeting only the subpopulation involved in angiogenesis may be more efficient.

We examined whether pericyte subtypes participate equally in angiogenesis. We found that type 2 pericytes are angiogenic in vivo and retain that potential in vitro. Only type 2 pericytes are recruited during tumour vessel formation [202]. Thus, they are the better cellular target for therapeutically inhibiting angiogenesis in cancer. Because of their angiogenic capacity, pericytes can be used to ameliorate limb ischaemia after transplantation into a mouse model of critical hindlimb ischaemia [123]. Again, we showed that type 2 pericytes improve blood flow in mice subjected to femoral artery ligation [202]. These results indicate that type 2 pericytes show promise for vascular therapy in ischaemic illnesses.

Future work should investigate the mechanisms underlying type 2 pericytes’ angiogenic potential and whether their ablation affects normal vascular function. To apply their beneficial effects on angiogenesis to human therapy, the complete type 2 pericyte transcriptome should be explored for a specific marker to identify them in wild-type species. Currently, they can only be identified in the nestin–GFP transgenic mouse [73,203,204].

PERICYTES AND AGE-DEPENDENT DECLINE IN TISSUE REPAIR

The mechanisms that impede tissue repair, particularly skeletal muscle regeneration with aging, remain poorly understood [62,205207]. Some studies suggest that the decrease in, and reduced function of, stem cells play an essential role [208211]. Previously, significant changes to the skeletal muscle pericyte microenvironment with aging have been reported [212]. Furthermore, some pericytes may not express a specific receptor that mediates the signalling pathway required for their differentiation, resulting in the emergence of a subpopulation with poor sensitivity to a specific agonist. Reduced expression of the Notch ligand Delta affects Notch signalling and consequently impairs muscle regeneration [207]. The TGFβ, Wnt and insulin-like growth factor (IGF) pathways have also been associated with age-dependent impairment of muscle regeneration [213216].

Because fibrous tissue accumulates in the skeletal muscle with aging [217223], TGFβ, a profibrotic cytokine [224], must be examined. The constitutively active PDGFRα-knockin mouse exhibits fibrosis both systemically and in the skeletal muscle [225]. It can be used to determine whether impaired PDGFR signalling with age affects different pericyte subtypes [226] and how extrinsic and intrinsic pericyte factors contribute to impaired muscle regeneration. Cell-intrinsic changes may be reversible or not but, either way, represent another source of heterogeneity. One pericyte subtype may be more prone to senescence or apoptosis with aging than another, with consequent imbalance in their relative proportions, and the aged environment may select for a subtype with distinct regenerative potential [227]. The newly characterized pericyte subtypes prompt investigation of reported heterogenous stem cells [228231] and their role in tissue regeneration.

Future studies should: (i) evaluate whether the described roles of pericytes in several tissues change in the aging environment; (ii) identify whether pericyte subpopulations are affected differently by age; (iii) determine pericyte fate when exposed to such ligands as TGFβ, IGF-I, PDGF-AA, Wnt and Delta; (iv) test pericytes’ differentiation potential (myogenic, fibrogenic or adipogenic) when incubated with PDGFRα-, TGFβ receptor (TGFβR)-, IGF-I receptor (IGFR)-, Frizzled- or Notch Fc-chimaeric receptors, which compete for ligands with pericyte receptors in vitro; and (v) induce muscle regeneration by activating any of the pathways involved in pericyte subtype signalling by injecting or locally overexpressing the ligand or receptor, respectively.

CONCLUDING REMARKS

Recent studies support unique functions for pericyte subsets that may enable new therapeutic strategies. Although overall, pericytes are multipotent stem cells, their subpopulations are differentially committed to specific lineages (oligopotent) (Figure 1). To translate animal research on pericyte subtypes to humans, specific markers for pericyte subpopulations must be validated in human tissues to clarify their endogenous physiological response to physiological and pathological conditions. Microarray analysis may provide new markers allowing ablation of a specific pericyte subtype in vivo. Whether pericyte subtypes have distinct requirements for self-renewal, activation and proliferation remains unknown, but using them indiscriminately for tissue repair may result in excessive fibrosis, fat accumulation and, eventually, tumour expansion.

Hypothetical diagram of the roles of pericyte subtypes in tissue formation

Figure 1
Hypothetical diagram of the roles of pericyte subtypes in tissue formation

Two subpopulations of pericytes are associated with blood vessels: type 1 (yellow) and type 2 (green). Pericyte subtypes are oligopotent and their ability to differentiate is restricted.

Figure 1
Hypothetical diagram of the roles of pericyte subtypes in tissue formation

Two subpopulations of pericytes are associated with blood vessels: type 1 (yellow) and type 2 (green). Pericyte subtypes are oligopotent and their ability to differentiate is restricted.

FUNDING

Our own work was supported by a Glenn/AFAR Scholarship for Research in the Biology of Aging (to A.B.); Wake Forest Pepper Center Pilot Project (to O.D.); a PUSH grant from the Wake Forest Comprehensive Cancer Center (to A.M. and O.D.); the National Institutes of Health/National Institute on Aging [grant numbers AG13934, AG15820 (to O.D.)]; and the Wake Forest Claude D. Pepper Older Americans Independence Center [grant number P30-AG21332].

Abbreviations

     
  • CNS

    central nervous system

  •  
  • FSP1

    fibroblast-specific protein 1

  •  
  • Glast

    glutamate aspartate transporter

  •  
  • IGF

    insulin-like growth factor

  •  
  • LEPR

    leptin receptor

  •  
  • MSC

    mesenchymal stem cell

  •  
  • NG2

    nerve/glial antigen-2

  •  
  • PDGF

    platelet-derived growth factor

  •  
  • PDGFR

    platelet-derived growth factor receptor

  •  
  • PPARγ

    peroxisome-proliferator-activated receptor-γ

  •  
  • αSMA

    α-smooth muscle actin

  •  
  • TGF

    transforming growth factor

References

References
1
Rouget
 
C.
 
Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques
Arch. Phys.
1873
, vol. 
5
 (pg. 
603
-
610
)
2
Zimmermann
 
K. W.
 
Der feinere Bau der Blutkapillaren
Z. Anat. Entwicklungsgesch.
1923
, vol. 
68
 (pg. 
29
-
109
)
3
Hirschi
 
K. K.
D’Amore
 
P. A.
 
Pericytes in the microvasculature
Cardiovasc. Res.
1996
, vol. 
32
 (pg. 
687
-
698
)
[PubMed]
4
Diaz-Flores
 
L.
Gutierrez
 
R.
Varela
 
H.
Rancel
 
N.
Valladares
 
F.
 
Microvascular pericytes: a review of their morphological and functional characteristics
Histol. Histopathol.
1991
, vol. 
6
 (pg. 
269
-
286
)
[PubMed]
5
Dore-Duffy
 
P.
Mehedi
 
A.
Wang
 
X.
Bradley
 
M.
Trotter
 
R.
Gow
 
A.
 
Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent
Microvasc. Res.
2011
, vol. 
82
 (pg. 
18
-
27
)
[PubMed]
6
Crisan
 
M.
Deasy
 
B.
Gavina
 
M.
Zheng
 
B.
Huard
 
J.
Lazzari
 
L.
Peault
 
B.
 
Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes
Methods Cell Biol.
2008
, vol. 
86
 (pg. 
295
-
309
)
[PubMed]
7
Pallone
 
T. L.
Silldorff
 
E. P.
 
Pericyte regulation of renal medullary blood flow
Exp. Nephrol.
2001
, vol. 
9
 (pg. 
165
-
170
)
[PubMed]
8
Pallone
 
T. L.
Silldorff
 
E. P.
Turner
 
M. R.
 
Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion
Clin. Exp. Pharmacol. Physiol.
1998
, vol. 
25
 (pg. 
383
-
392
)
[PubMed]
9
Pallone
 
T. L.
Zhang
 
Z.
Rhinehart
 
K.
 
Physiology of the renal medullary microcirculation
Am. J. Physiol. Renal. Physiol.
2003
, vol. 
284
 (pg. 
F253
-
F266
)
[PubMed]
10
Soriano
 
P.
 
Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice
Genes Dev.
1994
, vol. 
8
 (pg. 
1888
-
1896
)
[PubMed]
11
Enge
 
M.
Bjarnegard
 
M.
Gerhardt
 
H.
Gustafsson
 
E.
Kalen
 
M.
Asker
 
N.
Hammes
 
H. P.
Shani
 
M.
Fassler
 
R.
Betsholtz
 
C.
 
Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy
EMBO J.
2002
, vol. 
21
 (pg. 
4307
-
4316
)
[PubMed]
12
Hellstrom
 
M.
Gerhardt
 
H.
Kalen
 
M.
Li
 
X.
Eriksson
 
U.
Wolburg
 
H.
Betsholtz
 
C.
 
Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis
J. Cell Biol.
2001
, vol. 
153
 (pg. 
543
-
553
)
[PubMed]
13
Leveen
 
P.
Pekny
 
M.
Gebre-Medhin
 
S.
Swolin
 
B.
Larsson
 
E.
Betsholtz
 
C.
 
Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities
Genes Dev.
1994
, vol. 
8
 (pg. 
1875
-
1887
)
[PubMed]
14
Lindahl
 
P.
Johansson
 
B. R.
Leveen
 
P.
Betsholtz
 
C.
 
Pericyte loss and microaneurysm formation in PDGF-B-deficient mice
Science
1997
, vol. 
277
 (pg. 
242
-
245
)
[PubMed]
15
Krueger
 
M.
Bechmann
 
I.
 
CNS pericytes: concepts, misconceptions, and a way out
Glia
2010
, vol. 
58
 (pg. 
1
-
10
)
[PubMed]
16
Cuevas
 
P.
Gutierrez-Diaz
 
J. A.
Reimers
 
D.
Dujovny
 
M.
Diaz
 
F. G.
Ausman
 
J. I.
 
Pericyte endothelial gap junctions in human cerebral capillaries
Anat. Embryol.
1984
, vol. 
170
 (pg. 
155
-
159
)
[PubMed]
17
Dohgu
 
S.
Takata
 
F.
Yamauchi
 
A.
Nakagawa
 
S.
Egawa
 
T.
Naito
 
M.
Tsuruo
 
T.
Sawada
 
Y.
Niwa
 
M.
Kataoka
 
Y.
 
Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production
Brain Res.
2005
, vol. 
1038
 (pg. 
208
-
215
)
[PubMed]
18
Nakagawa
 
S.
Deli
 
M. A.
Nakao
 
S.
Honda
 
M.
Hayashi
 
K.
Nakaoke
 
R.
Kataoka
 
Y.
Niwa
 
M.
 
Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells
Cell. Mol. Neurobiol.
2007
, vol. 
27
 (pg. 
687
-
694
)
[PubMed]
19
Nakamura
 
K.
Kamouchi
 
M.
Kitazono
 
T.
Kuroda
 
J.
Matsuo
 
R.
Hagiwara
 
N.
Ishikawa
 
E.
Ooboshi
 
H.
Ibayashi
 
S.
Iida
 
M.
 
Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes
Am. J. Physiol. Heart Circ. Physiol.
2008
, vol. 
294
 (pg. 
H1700
-
H1707
)
[PubMed]
20
Al Ahmad
 
A.
Taboada
 
C. B.
Gassmann
 
M.
Ogunshola
 
O. O.
 
Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult
J. Cereb. Blood Flow Metab.
2011
, vol. 
31
 (pg. 
693
-
705
)
[PubMed]
21
Shimizu
 
F.
Sano
 
Y.
Maeda
 
T.
Abe
 
M. A.
Nakayama
 
H.
Takahashi
 
R.
Ueda
 
M.
Ohtsuki
 
S.
Terasaki
 
T.
Obinata
 
M.
Kanda
 
T.
 
Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells
J. Cell. Physiol.
2008
, vol. 
217
 (pg. 
388
-
399
)
[PubMed]
22
Armulik
 
A.
Genove
 
G.
Mae
 
M.
Nisancioglu
 
M. H.
Wallgard
 
E.
Niaudet
 
C.
He
 
L.
Norlin
 
J.
Lindblom
 
P.
Strittmatter
 
K.
Johansson
 
B. R.
Betsholtz
 
C.
 
Pericytes regulate the blood-brain barrier
Nature
2010
, vol. 
468
 (pg. 
557
-
561
)
[PubMed]
23
Bell
 
R. D.
Winkler
 
E. A.
Sagare
 
A. P.
Singh
 
I.
LaRue
 
B.
Deane
 
R.
Zlokovic
 
B. V.
 
Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging
Neuron
2010
, vol. 
68
 (pg. 
409
-
427
)
[PubMed]
24
Kamouchi
 
M.
Ago
 
T.
Kitazono
 
T.
 
Brain pericytes: emerging concepts and functional roles in brain homeostasis
Cell. Mol. Neurobiol.
2011
, vol. 
31
 (pg. 
175
-
193
)
[PubMed]
25
Daneman
 
R.
Zhou
 
L.
Kebede
 
A. A.
Barres
 
B. A.
 
Pericytes are required for blood-brain barrier integrity during embryogenesis
Nature
2010
, vol. 
468
 (pg. 
562
-
566
)
[PubMed]
26
Kim
 
J. A.
Tran
 
N. D.
Li
 
Z.
Yang
 
F.
Zhou
 
W.
Fisher
 
M. J.
 
Brain endothelial hemostasis regulation by pericytes
J. Cereb. Blood Flow Metab.
2006
, vol. 
26
 (pg. 
209
-
217
)
[PubMed]
27
Fisher
 
M.
 
Pericyte signaling in the neurovascular unit
Stroke
2009
, vol. 
40
 (pg. 
S13
-
S15
)
[PubMed]
28
Bouchard
 
B. A.
Shatos
 
M. A.
Tracy
 
P. B.
 
Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation
Arterioscler. Thromb. Vasc. Biol.
1997
, vol. 
17
 (pg. 
1
-
9
)
[PubMed]
29
Balabanov
 
R.
Beaumont
 
T.
Dore-Duffy
 
P.
 
Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes
J. Neurosci. Res.
1999
, vol. 
55
 (pg. 
578
-
587
)
[PubMed]
30
Tu
 
Z.
Li
 
Y.
Smith
 
D. S.
Sheibani
 
N.
Huang
 
S.
Kern
 
T.
Lin
 
F.
 
Retinal pericytes inhibit activated T cell proliferation
Invest. Ophthalmol. Vis. Sci.
2011
, vol. 
52
 (pg. 
9005
-
9010
)
[PubMed]
31
Verbeek
 
M. M.
Westphal
 
J. R.
Ruiter
 
D. J.
de Waal
 
R. M.
 
T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions
J. Immunol.
1995
, vol. 
154
 (pg. 
5876
-
5884
)
[PubMed]
32
Fabry
 
Z.
Fitzsimmons
 
K. M.
Herlein
 
J. A.
Moninger
 
T. O.
Dobbs
 
M. B.
Hart
 
M. N.
 
Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes
J. Neuroimmunol.
1993
, vol. 
47
 (pg. 
23
-
34
)
[PubMed]
33
Jeynes
 
B.
 
Reactions of granular pericytes in a rabbit cerebrovascular ischemia model
Stroke
1985
, vol. 
16
 (pg. 
121
-
125
)
[PubMed]
34
Balabanov
 
R.
Washington
 
R.
Wagnerova
 
J.
Dore-Duffy
 
P.
 
CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2
Microvasc. Res.
1996
, vol. 
52
 (pg. 
127
-
142
)
[PubMed]
35
Thomas
 
W. E.
 
Brain macrophages: on the role of pericytes and perivascular cells
Brain Res. Brain Res. Rev.
1999
, vol. 
31
 (pg. 
42
-
57
)
[PubMed]
36
Hasan
 
M.
Glees
 
P.
 
The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution
J. Hirnforsch.
1990
, vol. 
31
 (pg. 
237
-
249
)
[PubMed]
37
Castejon
 
O. J.
 
Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema
Folia Neuropathol.
2011
, vol. 
49
 (pg. 
162
-
173
)
[PubMed]
38
Pan
 
S. Y.
Chang
 
Y. T.
Lin
 
S. L.
 
Microvascular pericytes in healthy and diseased kidneys
Int. J. Nephrol. Renovasc. Dis.
2014
, vol. 
7
 (pg. 
39
-
48
)
[PubMed]
39
Hurtado-Alvarado
 
G.
Cabanas-Morales
 
A. M.
Gomez-Gonzalez
 
B.
 
Pericytes: brain-immune interface modulators
Front. Integr. Neurosci.
2014
, vol. 
7
 pg. 
80
 
[PubMed]
40
Hellerbrand
 
C.
 
Hepatic stellate cells-the pericytes in the liver
Pflugers Arch.
2013
, vol. 
465
 (pg. 
775
-
778
)
[PubMed]
41
Nees
 
S.
Weiss
 
D. R.
Juchem
 
G.
 
Focus on cardiac pericytes
Pflugers Arch.
2013
, vol. 
465
 (pg. 
779
-
787
)
[PubMed]
42
Pfister
 
F.
Przybyt
 
E.
Harmsen
 
M. C.
Hammes
 
H. P.
 
Pericytes in the eye
Pflugers Arch.
2013
, vol. 
465
 (pg. 
789
-
796
)
[PubMed]
43
Armulik
 
A.
Genove
 
G.
Betsholtz
 
C.
 
Pericytes: developmental, physiological, and pathological perspectives, problems, and promises
Dev. Cell
2011
, vol. 
21
 (pg. 
193
-
215
)
[PubMed]
44
Sims
 
D. E.
 
Diversity within pericytes
Clin. Exp. Pharmacol. Physiol.
2000
, vol. 
27
 (pg. 
842
-
846
)
[PubMed]
45
Sims
 
D. E.
 
Recent advances in pericyte biology–implications for health and disease
Can. J. Cardiol.
1991
, vol. 
7
 (pg. 
431
-
443
)
[PubMed]
46
Nehls
 
V.
Drenckhahn
 
D.
 
Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin
J. Cell Biol.
1991
, vol. 
113
 (pg. 
147
-
154
)
[PubMed]
47
Shepro
 
D.
Morel
 
N. M.
 
Pericyte physiology
FASEB J.
1993
, vol. 
7
 (pg. 
1031
-
1038
)
[PubMed]
48
Simon
 
C.
Lickert
 
H.
Gotz
 
M.
Dimou
 
L.
 
Sox10-iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage
Genesis
2012
, vol. 
50
 (pg. 
506
-
515
)
[PubMed]
49
Winkler
 
E. A.
Bell
 
R. D.
Zlokovic
 
B. V.
 
Central nervous system pericytes in health and disease
Nat. Neurosci.
2011
, vol. 
14
 (pg. 
1398
-
1405
)
[PubMed]
50
Asahina
 
K.
Zhou
 
B.
Pu
 
W. T.
Tsukamoto
 
H.
 
Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver
Hepatology
2011
, vol. 
53
 (pg. 
983
-
995
)
[PubMed]
51
Bergwerff
 
M.
Verberne
 
M. E.
DeRuiter
 
M. C.
Poelmann
 
R. E.
Gittenberger-de Groot
 
A. C.
 
Neural crest cell contribution to the developing circulatory system: implications for vascular morphology?
Circ. Res.
1998
, vol. 
82
 (pg. 
221
-
231
)
[PubMed]
52
Etchevers
 
H. C.
Vincent
 
C.
Le Douarin
 
N. M.
Couly
 
G. F.
 
The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain
Development
2001
, vol. 
128
 (pg. 
1059
-
1068
)
[PubMed]
53
Korn
 
J.
Christ
 
B.
Kurz
 
H.
 
Neuroectodermal origin of brain pericytes and vascular smooth muscle cells
J. Comp. Neurol.
2002
, vol. 
442
 (pg. 
78
-
88
)
[PubMed]
54
Que
 
J.
Wilm
 
B.
Hasegawa
 
H.
Wang
 
F.
Bader
 
D.
Hogan
 
B. L.
 
Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development
Proc. Natl. Acad. Sci. U.S.A.
2008
, vol. 
105
 (pg. 
16626
-
16630
)
[PubMed]
55
Wilm
 
B.
Ipenberg
 
A.
Hastie
 
N. D.
Burch
 
J. B.
Bader
 
D. M.
 
The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature
Development
2005
, vol. 
132
 (pg. 
5317
-
5328
)
[PubMed]
56
Yamanishi
 
E.
Takahashi
 
M.
Saga
 
Y.
Osumi
 
N.
 
Penetration and differentiation of cephalic neural crest-derived cells in the developing mouse telencephalon
Dev. Growth Differ.
2012
, vol. 
54
 (pg. 
785
-
800
)
[PubMed]
57
Soderblom
 
C.
Luo
 
X.
Blumenthal
 
E.
Bray
 
E.
Lyapichev
 
K.
Ramos
 
J.
Krishnan
 
V.
Lai-Hsu
 
C.
Park
 
K. K.
Tsoulfas
 
P.
Lee
 
J. K.
 
Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury
J. Neurosci.
2013
, vol. 
33
 (pg. 
13882
-
13887
)
[PubMed]
58
Spitzer
 
T. L.
Rojas
 
A.
Zelenko
 
Z.
Aghajanova
 
L.
Erikson
 
D. W.
Barragan
 
F.
Meyer
 
M.
Tamaresis
 
J. S.
Hamilton
 
A. E.
Irwin
 
J. C.
Giudice
 
L. C.
 
Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype
Biol. Reprod.
2012
, vol. 
86
 pg. 
58
 
[PubMed]
59
Joe
 
A. W.
Yi
 
L.
Natarajan
 
A.
Le Grand
 
F.
So
 
L.
Wang
 
J.
Rudnicki
 
M. A.
Rossi
 
F. M.
 
Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
Nat. Cell Biol.
2010
, vol. 
12
 (pg. 
153
-
163
)
[PubMed]
60
Mendias
 
C. L.
Gumucio
 
J. P.
Davis
 
M. E.
Bromley
 
C. W.
Davis
 
C. S.
Brooks
 
S. V.
 
Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis
Muscle Nerve
2012
, vol. 
45
 (pg. 
55
-
59
)
[PubMed]
61
Covas
 
D. T.
Panepucci
 
R. A.
Fontes
 
A. M.
Silva
 
W. A.
Orellana
 
M. D.
Freitas
 
M. C.
Neder
 
L.
Santos
 
A. R.
Peres
 
L. C.
Jamur
 
M. C.
Zago
 
M. A.
 
Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts
Exp. Hematol.
2008
, vol. 
36
 (pg. 
642
-
654
)
[PubMed]
62
Birbrair
 
A.
Zhang
 
T.
Wang
 
Z. M.
Messi
 
M. L.
Mintz
 
A.
Delbono
 
O.
 
Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle
Am. J. Physiol. Cell Physiol.
2013
, vol. 
305
 (pg. 
C1098
-
C1113
)
[PubMed]
63
Verbeek
 
M. M.
Otte-Holler
 
I.
Wesseling
 
P.
Ruiter
 
D. J.
de Waal
 
R. M.
 
Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1
Am. J. Pathol.
1994
, vol. 
144
 (pg. 
372
-
382
)
[PubMed]
64
Winkler
 
E. A.
Bell
 
R. D.
Zlokovic
 
B. V.
 
Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling
Mol. Neurodegener.
2010
, vol. 
5
 pg. 
32
 
[PubMed]
65
Kunz
 
J.
Krause
 
D.
Kremer
 
M.
Dermietzel
 
R.
 
The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase N
J. Neurochem.
1994
, vol. 
62
 (pg. 
2375
-
2386
)
[PubMed]
66
Ozerdem
 
U.
Grako
 
K. A.
Dahlin-Huppe
 
K.
Monosov
 
E.
Stallcup
 
W. B.
 
NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis
Dev. Dyn.
2001
, vol. 
222
 (pg. 
218
-
227
)
[PubMed]
67
Morikawa
 
S.
Baluk
 
P.
Kaidoh
 
T.
Haskell
 
A.
Jain
 
R. K.
McDonald
 
D. M.
 
Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors
Am. J. Pathol.
2002
, vol. 
160
 (pg. 
985
-
1000
)
[PubMed]
68
Nehls
 
V.
Denzer
 
K.
Drenckhahn
 
D.
 
Pericyte involvement in capillary sprouting during angiogenesis in situ
Cell Tissue Res.
1992
, vol. 
270
 (pg. 
469
-
474
)
[PubMed]
69
Bondjers
 
C.
He
 
L.
Takemoto
 
M.
Norlin
 
J.
Asker
 
N.
Hellstrom
 
M.
Lindahl
 
P.
Betsholtz
 
C.
 
Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes
FASEB J.
2006
, vol. 
20
 (pg. 
1703
-
1705
)
[PubMed]
70
Goritz
 
C.
Dias
 
D. O.
Tomilin
 
N.
Barbacid
 
M.
Shupliakov
 
O.
Frisen
 
J.
 
A pericyte origin of spinal cord scar tissue
Science
2011
, vol. 
333
 (pg. 
238
-
242
)
[PubMed]
71
Kunisaki
 
Y.
Bruns
 
I.
Scheiermann
 
C.
Ahmed
 
J.
Pinho
 
S.
Zhang
 
D.
Mizoguchi
 
T.
Wei
 
Q.
Lucas
 
D.
Ito
 
K.
, et al 
Arteriolar niches maintain haematopoietic stem cell quiescence
Nature
2013
, vol. 
502
 (pg. 
637
-
643
)
[PubMed]
72
Stark
 
K.
Eckart
 
A.
Haidari
 
S.
Tirniceriu
 
A.
Lorenz
 
M.
von Bruhl
 
M. L.
Gartner
 
F.
Khandoga
 
A. G.
Legate
 
K. R.
Pless
 
R.
, et al 
Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs
Nat. Immunol.
2013
, vol. 
14
 (pg. 
41
-
51
)
[PubMed]
73
Birbrair
 
A.
Zhang
 
T.
Wang
 
Z. M.
Messi
 
M. L.
Enikolopov
 
G. N.
Mintz
 
A.
Delbono
 
O.
 
Skeletal muscle pericyte subtypes differ in their differentiation potential
Stem Cell Res.
2013
, vol. 
10
 (pg. 
67
-
84
)
[PubMed]
74
Bonkowski
 
D.
Katyshev
 
V.
Balabanov
 
R. D.
Borisov
 
A.
Dore-Duffy
 
P.
 
The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival
Fluids Barriers CNS.
2011
, vol. 
8
 pg. 
8
 
[PubMed]
75
Corselli
 
M.
Chen
 
C. W.
Crisan
 
M.
Lazzari
 
L.
Peault
 
B.
 
Perivascular ancestors of adult multipotent stem cells
Arterioscler. Thromb. Vasc. Biol.
2010
, vol. 
30
 (pg. 
1104
-
1109
)
[PubMed]
76
Caplan
 
A. I.
 
All MSCs are pericytes?
Cell Stem Cell
2008
, vol. 
3
 (pg. 
229
-
230
)
[PubMed]
77
Feng
 
J.
Mantesso
 
A.
Sharpe
 
P. T.
 
Perivascular cells as mesenchymal stem cells
Expert Opin. Biol. Ther.
2010
, vol. 
10
 (pg. 
1441
-
1451
)
[PubMed]
78
Caplan
 
A. I.
 
Adult mesenchymal stem cells for tissue engineering versus regenerative medicine
J Cell. Physiol.
2007
, vol. 
213
 (pg. 
341
-
347
)
[PubMed]
79
Maier
 
C. L.
Shepherd
 
B. R.
Yi
 
T.
Pober
 
J. S.
 
Explant outgrowth, propagation and characterization of human pericytes
Microcirculation
2010
, vol. 
17
 (pg. 
367
-
380
)
[PubMed]
80
Dellavalle
 
A.
Maroli
 
G.
Covarello
 
D.
Azzoni
 
E.
Innocenzi
 
A.
Perani
 
L.
Antonini
 
S.
Sambasivan
 
R.
Brunelli
 
S.
Tajbakhsh
 
S.
Cossu
 
G.
 
Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells
Nat. Commun.
2011
, vol. 
2
 pg. 
499
 
[PubMed]
81
Sacchetti
 
B.
Funari
 
A.
Michienzi
 
S.
Di Cesare
 
S.
Piersanti
 
S.
Saggio
 
I.
Tagliafico
 
E.
Ferrari
 
S.
Robey
 
P. G.
Riminucci
 
M.
Bianco
 
P.
 
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
Cell
2007
, vol. 
131
 (pg. 
324
-
336
)
[PubMed]
82
Nehls
 
V.
Drenckhahn
 
D.
 
The versatility of microvascular pericytes: from mesenchyme to smooth muscle?
Histochemistry
1993
, vol. 
99
 (pg. 
1
-
12
)
[PubMed]
83
Alliot-Licht
 
B.
Hurtrel
 
D.
Gregoire
 
M.
 
Characterization of alpha-smooth muscle actin positive cells in mineralized human dental pulp cultures
Arch. Oral Biol.
2001
, vol. 
46
 (pg. 
221
-
228
)
[PubMed]
84
Shi
 
S.
Gronthos
 
S.
 
Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp
J. Bone Miner. Res.
2003
, vol. 
18
 (pg. 
696
-
704
)
[PubMed]
85
Crisan
 
M.
Yap
 
S.
Casteilla
 
L.
Chen
 
C. W.
Corselli
 
M.
Park
 
T. S.
Andriolo
 
G.
Sun
 
B.
Zheng
 
B.
Zhang
 
L.
, et al 
A perivascular origin for mesenchymal stem cells in multiple human organs
Cell. Stem Cell
2008
, vol. 
3
 (pg. 
301
-
313
)
[PubMed]
86
Lin
 
G.
Garcia
 
M.
Ning
 
H.
Banie
 
L.
Guo
 
Y. L.
Lue
 
T. F.
Lin
 
C. S.
 
Defining stem and progenitor cells within adipose tissue
Stem Cells Dev.
2008
, vol. 
17
 (pg. 
1053
-
1063
)
[PubMed]
87
Feng
 
J.
Mantesso
 
A.
De Bari
 
C.
Nishiyama
 
A.
Sharpe
 
P. T.
 
Dual origin of mesenchymal stem cells contributing to organ growth and repair
Proc. Natl. Acad. Sci. U.S.A.
2011
, vol. 
108
 (pg. 
6503
-
6508
)
[PubMed]
88
Dellavalle
 
A.
Sampaolesi
 
M.
Tonlorenzi
 
R.
Tagliafico
 
E.
Sacchetti
 
B.
Perani
 
L.
Innocenzi
 
A.
Galvez
 
B. G.
Messina
 
G.
Morosetti
 
R.
, et al 
Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells
Nat. Cell Biol.
2007
, vol. 
9
 (pg. 
255
-
267
)
[PubMed]
89
Canfield
 
A. E.
Sutton
 
A. B.
Hoyland
 
J. A.
Schor
 
A. M.
 
Association of thrombospondin-1 with osteogenic differentiation of retinal pericytes in vitro
J. Cell. Sci.
1996
, vol. 
109
 (pg. 
343
-
353
)
[PubMed]
90
Doherty
 
M. J.
Ashton
 
B. A.
Walsh
 
S.
Beresford
 
J. N.
Grant
 
M. E.
Canfield
 
A. E.
 
Vascular pericytes express osteogenic potential in vitro and in vivo
J. Bone Miner. Res.
1998
, vol. 
13
 (pg. 
828
-
838
)
[PubMed]
91
Karow
 
M.
Sanchez
 
R.
Schichor
 
C.
Masserdotti
 
G.
Ortega
 
F.
Heinrich
 
C.
Gascon
 
S.
Khan
 
M. A.
Lie
 
D. C.
Dellavalle
 
A.
, et al 
Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells
Cell Stem Cell
2012
, vol. 
11
 (pg. 
471
-
476
)
[PubMed]
92
Diaz-Manera
 
J.
Gallardo
 
E.
de Luna
 
N.
Navas
 
M.
Soria
 
L.
Garibaldi
 
M.
Rojas-Garcia
 
R.
Tonlorenzi
 
R.
Cossu
 
G.
Illa
 
I.
 
The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo
J. Pathol.
2012
, vol. 
228
 (pg. 
544
-
553
)
[PubMed]
93
Dore-Duffy
 
P.
Katychev
 
A.
Wang
 
X.
Van Buren
 
E.
 
CNS microvascular pericytes exhibit multipotential stem cell activity
J. Cereb. Blood Flow Metab.
2006
, vol. 
26
 (pg. 
613
-
624
)
[PubMed]
94
Dore-Duffy
 
P.
 
Pericytes: pluripotent cells of the blood brain barrier
Curr. Pharm. Des.
2008
, vol. 
14
 (pg. 
1581
-
1593
)
[PubMed]
95
Chunmeng
 
S.
Tianmin
 
C.
 
Skin: a promising reservoir for adult stem cell populations
Med. Hypotheses
2004
, vol. 
62
 (pg. 
683
-
688
)
[PubMed]
96
Herrera
 
M. B.
Bruno
 
S.
Buttiglieri
 
S.
Tetta
 
C.
Gatti
 
S.
Deregibus
 
M. C.
Bussolati
 
B.
Camussi
 
G.
 
Isolation and characterization of a stem cell population from adult human liver
Stem Cells
2006
, vol. 
24
 (pg. 
2840
-
2850
)
[PubMed]
97
Saif
 
J.
Heeschen
 
C.
Aicher
 
A.
 
Add some fat to vascular progenitor cell therapy
Circ. Res.
2009
, vol. 
104
 (pg. 
1330
-
1332
)
[PubMed]
98
Lin
 
C. S.
Xin
 
Z. C.
Deng
 
C. H.
Ning
 
H.
Lin
 
G.
Lue
 
T. F.
 
Defining adipose tissue-derived stem cells in tissue and in culture
Histol. Histopathol.
2010
, vol. 
25
 (pg. 
807
-
815
)
[PubMed]
99
Zimmerlin
 
L.
Donnenberg
 
V. S.
Donnenberg
 
A. D.
 
Rare event detection and analysis in flow cytometry: bone marrow mesenchymal stem cells, breast cancer stem/progenitor cells in malignant effusions, and pericytes in disaggregated adipose tissue
Methods Mol. Biol.
2011
, vol. 
699
 (pg. 
251
-
273
)
[PubMed]
100
Paquet-Fifield
 
S.
Redvers
 
R. P.
Pouliot
 
N.
Kaur
 
P.
 
A transplant model for human epidermal skin regeneration
Methods Mol. Biol.
2010
, vol. 
585
 (pg. 
369
-
382
)
[PubMed]
101
Cai
 
X.
Lin
 
Y.
Friedrich
 
C. C.
Neville
 
C.
Pomerantseva
 
I.
Sundback
 
C. A.
Zhang
 
Z.
Vacanti
 
J. P.
Hauschka
 
P. V.
Grottkau
 
B. E.
 
Bone marrow derived pluripotent cells are pericytes which contribute to vascularization
Stem Cell Rev.
2009
, vol. 
5
 (pg. 
437
-
445
)
[PubMed]
102
Klein
 
D.
Hohn
 
H. P.
Kleff
 
V.
Tilki
 
D.
Ergun
 
S.
 
Vascular wall-resident stem cells
Histol. Histopathol.
2010
, vol. 
25
 (pg. 
681
-
689
)
[PubMed]
103
Ergun
 
S.
Tilki
 
D.
Klein
 
D.
 
Vascular wall as a reservoir for different types of stem and progenitor cells
Antioxid. Redox Signal.
2011
, vol. 
15
 (pg. 
981
-
995
)
[PubMed]
104
Satokata
 
I.
Ma
 
L.
Ohshima
 
H.
Bei
 
M.
Woo
 
I.
Nishizawa
 
K.
Maeda
 
T.
Takano
 
Y.
Uchiyama
 
M.
Heaney
 
S.
, et al 
Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation
Nat. Genet.
2000
, vol. 
24
 (pg. 
391
-
395
)
[PubMed]
105
da Silva Meirelles
 
L.
Caplan
 
A. I.
Nardi
 
N. B.
 
In search of the in vivo identity of mesenchymal stem cells
Stem Cells
2008
, vol. 
26
 (pg. 
2287
-
2299
)
[PubMed]
106
Jung
 
K. H.
Chu
 
K.
Lee
 
S. T.
Bahn
 
J. J.
Jeon
 
D.
Kim
 
J. H.
Kim
 
S.
Won
 
C. H.
Kim
 
M.
Lee
 
S. K.
Roh
 
J. K.
 
Multipotent PDGFRbeta-expressing cells in the circulation of stroke patients
Neurobiol. Dis.
2011
, vol. 
41
 (pg. 
489
-
497
)
[PubMed]
107
Nakagomi
 
T.
Molnar
 
Z.
Nakano-Doi
 
A.
Taguchi
 
A.
Saino
 
O.
Kubo
 
S.
Clausen
 
M.
Yoshikawa
 
H.
Nakagomi
 
N.
Matsuyama
 
T.
 
Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction
Stem Cells Dev.
2011
, vol. 
20
 (pg. 
2037
-
2051
)
[PubMed]
108
Olson
 
L. E.
Soriano
 
P.
 
PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development
Dev. Cell
2011
, vol. 
20
 (pg. 
815
-
826
)
[PubMed]
109
Bouacida
 
A.
Rosset
 
P.
Trichet
 
V.
Guilloton
 
F.
Espagnolle
 
N.
Cordonier
 
T.
Heymann
 
D.
Layrolle
 
P.
Sensebe
 
L.
Deschaseaux
 
F.
 
Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells
PLoS One
2012
, vol. 
7
 pg. 
e48648
 
[PubMed]
110
Murray
 
I. R.
West
 
C. C.
Hardy
 
W. R.
James
 
A. W.
Park
 
T. S.
Nguyen
 
A.
Tawonsawatruk
 
T.
Lazzari
 
L.
Soo
 
C.
Peault
 
B.
 
Natural history of mesenchymal stem cells, from vessel walls to culture vessels
Cell. Mol. Life Sci.
2014
, vol. 
71
 (pg. 
1353
-
1374
)
[PubMed]
111
Mills
 
S. J.
Cowin
 
A. J.
Kaur
 
P.
 
Pericytes, mesenchymal stem cells and the wound healing process
Cells
2013
, vol. 
2
 (pg. 
621
-
634
)
[PubMed]
112
Lin
 
C. S.
Lue
 
T. F.
 
Defining vascular stem cells
Stem Cells Dev.
2013
, vol. 
22
 (pg. 
1018
-
1026
)
[PubMed]
113
Wanjare
 
M.
Kusuma
 
S.
Gerecht
 
S.
 
Perivascular cells in blood vessel regeneration
Biotechnol. J.
2013
, vol. 
8
 (pg. 
434
-
447
)
[PubMed]
114
Chen
 
C. W.
Okada
 
M.
Proto
 
J. D.
Gao
 
X.
Sekiya
 
N.
Beckman
 
S. A.
Corselli
 
M.
Crisan
 
M.
Saparov
 
A.
Tobita
 
K.
Peault
 
B.
Huard
 
J.
 
Human pericytes for ischemic heart repair
Stem Cells.
2013
, vol. 
31
 (pg. 
305
-
316
)
[PubMed]
115
Katare
 
R.
Riu
 
F.
Mitchell
 
K.
Gubernator
 
M.
Campagnolo
 
P.
Cui
 
Y.
Fortunato
 
O.
Avolio
 
E.
Cesselli
 
D.
Beltrami
 
A. P.
Angelini
 
G.
Emanueli
 
C.
Madeddu
 
P.
 
Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132
Circ. Res.
2011
, vol. 
109
 (pg. 
894
-
906
)
[PubMed]
116
Zhao
 
H.
Feng
 
J.
Seidel
 
K.
Shi
 
S.
Klein
 
O.
Sharpe
 
P.
Chai
 
Y.
 
Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor
Cell Stem Cell
2014
, vol. 
14
 (pg. 
160
-
173
)
[PubMed]
117
Krautler
 
N. J.
Kana
 
V.
Kranich
 
J.
Tian
 
Y.
Perera
 
D.
Lemm
 
D.
Schwarz
 
P.
Armulik
 
A.
Browning
 
J. L.
Tallquist
 
M.
Buch
 
T.
Oliveira-Martins
 
J. B.
Zhu
 
C.
Hermann
 
M.
Wagner
 
U.
Brink
 
R.
Heikenwalder
 
M.
Aguzzi
 
A.
 
Follicular dendritic cells emerge from ubiquitous perivascular precursors
Cell
2012
, vol. 
150
 (pg. 
194
-
206
)
[PubMed]
118
Farrington-Rock
 
C.
Crofts
 
N. J.
Doherty
 
M. J.
Ashton
 
B. A.
Griffin-Jones
 
C.
Canfield
 
A. E.
 
Chondrogenic and adipogenic potential of microvascular pericytes
Circulation
2004
, vol. 
110
 (pg. 
2226
-
2232
)
[PubMed]
119
James
 
A. W.
Zara
 
J. N.
Zhang
 
X.
Askarinam
 
A.
Goyal
 
R.
Chiang
 
M.
Yuan
 
W.
Chang
 
L.
Corselli
 
M.
Shen
 
J.
, et al 
Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering
Stem Cells Transl. Med.
2012
, vol. 
1
 (pg. 
510
-
519
)
[PubMed]
120
Zebardast
 
N.
Lickorish
 
D.
Davies
 
J. E.
 
Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing
Organogenesis
2010
, vol. 
6
 (pg. 
197
-
203
)
[PubMed]
121
Dulauroy
 
S.
Di Carlo
 
S. E.
Langa
 
F.
Eberl
 
G.
Peduto
 
L.
 
Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury
Nat. Med.
2012
, vol. 
18
 (pg. 
1262
-
1270
)
[PubMed]
122
Duffield
 
J. S.
Lupher
 
M.
Thannickal
 
V. J.
Wynn
 
T. A.
 
Host responses in tissue repair and fibrosis
Annu. Rev. Pathol.
2013
, vol. 
8
 (pg. 
241
-
276
)
[PubMed]
123
Dar
 
A.
Domev
 
H.
Ben-Yosef
 
O.
Tzukerman
 
M.
Zeevi-Levin
 
N.
Novak
 
A.
Germanguz
 
I.
Amit
 
M.
Itskovitz-Eldor
 
J.
 
Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb
Circulation
2012
, vol. 
125
 (pg. 
87
-
99
)
[PubMed]
124
Ding
 
L.
Saunders
 
T. L.
Enikolopov
 
G.
Morrison
 
S. J.
 
Endothelial and perivascular cells maintain haematopoietic stem cells
Nature
2012
, vol. 
481
 (pg. 
457
-
462
)
[PubMed]
125
Corselli
 
M.
Chin
 
C. J.
Parekh
 
C.
Sahaghian
 
A.
Wang
 
W.
Ge
 
S.
Evseenko
 
D.
Wang
 
X.
Montelatici
 
E.
Lazzari
 
L.
, et al 
Perivascular support of human hematopoietic stem/progenitor cells
Blood
2013
, vol. 
121
 (pg. 
2891
-
2901
)
[PubMed]
126
Mendez-Ferrer
 
S.
Michurina
 
T. V.
Ferraro
 
F.
Mazloom
 
A. R.
Macarthur
 
B. D.
Lira
 
S. A.
Scadden
 
D. T.
Ma’ayan
 
A.
Enikolopov
 
G. N.
Frenette
 
P. S.
 
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
Nature
2010
, vol. 
466
 (pg. 
829
-
834
)
[PubMed]
126a
Birbrair
 
A.
Zhang
 
T.
Wang
 
Z.
Messi
 
M.L.
Mintz
 
A.
Delbono
 
O.
 
Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle
Front. Aging Neurosci.
2014
, vol. 
6
 pg. 
245 doi: 10.3389/fnagi.2014.00245
 
127
Meng
 
J.
Muntoni
 
F.
Morgan
 
J. E.
 
Stem cells to treat muscular dystrophies–where are we?
Neuromuscul. Disord.
2011
, vol. 
21
 (pg. 
4
-
12
)
[PubMed]
128
Birbrair
 
A.
Zhang
 
T.
Wang
 
Z. M.
Messi
 
M. L.
Enikolopov
 
G. N.
Mintz
 
A.
Delbono
 
O.
 
Role of pericytes in skeletal muscle regeneration and fat accumulation
Stem Cells Dev
2013
, vol. 
22
 (pg. 
2298
-
2314
)
[PubMed]
129
Geiger
 
H.
Van Zant
 
G.
 
The aging of lympho-hematopoietic stem cells
Nat. Immunol.
2002
, vol. 
3
 (pg. 
329
-
333
)
[PubMed]
130
Warren
 
L. A.
Rossi
 
D. J.
 
Stem cells and aging in the hematopoietic system
Mech. Ageing Dev.
2009
, vol. 
130
 (pg. 
46
-
53
)
[PubMed]
131
Morrison
 
S. J.
Wandycz
 
A. M.
Akashi
 
K.
Globerson
 
A.
Weissman
 
I. L.
 
The aging of hematopoietic stem cells
Nat. Med.
1996
, vol. 
2
 (pg. 
1011
-
1016
)
[PubMed]
132
McCarthy
 
J. J.
Mula
 
J.
Miyazaki
 
M.
Erfani
 
R.
Garrison
 
K.
Farooqui
 
A. B.
Srikuea
 
R.
Lawson
 
B. A.
Grimes
 
B.
Keller
 
C.
, et al 
Effective fiber hypertrophy in satellite cell-depleted skeletal muscle
Development
2011
, vol. 
138
 (pg. 
3657
-
3666
)
[PubMed]
133
Lepper
 
C.
Partridge
 
T. A.
Fan
 
C. M.
 
An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration
Development
2011
, vol. 
138
 (pg. 
3639
-
3646
)
[PubMed]
134
Murphy
 
M. M.
Lawson
 
J. A.
Mathew
 
S. J.
Hutcheson
 
D. A.
Kardon
 
G.
 
Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration
Development
2011
, vol. 
138
 (pg. 
3625
-
3637
)
[PubMed]
135
Sambasivan
 
R.
Yao
 
R.
Kissenpfennig
 
A.
Van Wittenberghe
 
L.
Paldi
 
A.
Gayraud-Morel
 
B.
Guenou
 
H.
Malissen
 
B.
Tajbakhsh
 
S.
Galy
 
A.
 
Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration
Development
2011
, vol. 
138
 (pg. 
3647
-
3656
)
[PubMed]
136
Christov
 
C.
Chretien
 
F.
Abou-Khalil
 
R.
Bassez
 
G.
Vallet
 
G.
Authier
 
F. J.
Bassaglia
 
Y.
Shinin
 
V.
Tajbakhsh
 
S.
Chazaud
 
B.
Gherardi
 
R. K.
 
Muscle satellite cells and endothelial cells: close neighbors and privileged partners
Mol. Biol. Cell
2007
, vol. 
18
 (pg. 
1397
-
1409
)
[PubMed]
137
Richardson
 
R. L.
Hausman
 
G. J.
Campion
 
D. R.
 
Response of pericytes to thermal lesion in the inguinal fat pad of 10-day-old rats
Acta Anat. (Basel)
1982
, vol. 
114
 (pg. 
41
-
57
)
[PubMed]
138
Cinti
 
S.
Cigolini
 
M.
Bosello
 
O.
Bjorntorp
 
P.
 
A morphological study of the adipocyte precursor
J Submicrosc. Cytol.
1984
, vol. 
16
 (pg. 
243
-
251
)
[PubMed]
139
Fukumura
 
D.
Ushiyama
 
A.
Duda
 
D. G.
Xu
 
L.
Tam
 
J.
Krishna
 
V.
Chatterjee
 
K.
Garkavtsev
 
I.
Jain
 
R. K.
 
Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis
Circ. Res.
2003
, vol. 
93
 (pg. 
e88
-
e97
)
[PubMed]
140
Rupnick
 
M. A.
Panigrahy
 
D.
Zhang
 
C. Y.
Dallabrida
 
S. M.
Lowell
 
B. B.
Langer
 
R.
Folkman
 
M. J.
 
Adipose tissue mass can be regulated through the vasculature
Proc. Natl. Acad. Sci. U.S.A.
2002
, vol. 
99
 (pg. 
10730
-
10735
)
[PubMed]
141
Davies
 
J. D.
Carpenter
 
K. L.
Challis
 
I. R.
Figg
 
N. L.
McNair
 
R.
Proudfoot
 
D.
Weissberg
 
P. L.
Shanahan
 
C. M.
 
Adipocytic differentiation and liver x receptor pathways regulate the accumulation of triacylglycerols in human vascular smooth muscle cells
J. Biol. Chem.
2005
, vol. 
280
 (pg. 
3911
-
3919
)
[PubMed]
142
Clark
 
E. R.
Clark
 
E. L.
 
Microscopic studies of the new formation of fat in living adult rabbits
Am. J. Anat.
1940
, vol. 
67
 (pg. 
255
-
285
)
143
Cawthorn
 
W. P.
Scheller
 
E. L.
MacDougald
 
O. A.
 
Adipose tissue stem cells meet preadipocyte commitment: going back to the future
J. Lipid Res.
2012
, vol. 
53
 (pg. 
227
-
246
)
[PubMed]
144
Iyama
 
K.
Ohzono
 
K.
Usuku
 
G.
 
Electron microscopical studies on the genesis of white adipocytes: differentiation of immature pericytes into adipocytes in transplanted preadipose tissue
Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.
1979
, vol. 
31
 (pg. 
143
-
155
)
[PubMed]
145
Zannettino
 
A. C.
Paton
 
S.
Arthur
 
A.
Khor
 
F.
Itescu
 
S.
Gimble
 
J. M.
Gronthos
 
S.
 
Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo
J. Cell. Physiol.
2008
, vol. 
214
 (pg. 
413
-
421
)
[PubMed]
146
Traktuev
 
D. O.
Merfeld-Clauss
 
S.
Li
 
J.
Kolonin
 
M.
Arap
 
W.
Pasqualini
 
R.
Johnstone
 
B. H.
March
 
K. L.
 
A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks
Circ. Res.
2008
, vol. 
102
 (pg. 
77
-
85
)
[PubMed]
147
Cai
 
X.
Lin
 
Y.
Hauschka
 
P. V.
Grottkau
 
B. E.
 
Adipose stem cells originate from perivascular cells
Biol. Cell
2011
, vol. 
103
 (pg. 
435
-
447
)
[PubMed]
148
Tang
 
W.
Zeve
 
D.
Suh
 
J. M.
Bosnakovski
 
D.
Kyba
 
M.
Hammer
 
R. E.
Tallquist
 
M. D.
Graff
 
J. M.
 
White fat progenitor cells reside in the adipose vasculature
Science
2008
, vol. 
322
 (pg. 
583
-
586
)
[PubMed]
149
Paquet-Fifield
 
S.
Schluter
 
H.
Li
 
A.
Aitken
 
T.
Gangatirkar
 
P.
Blashki
 
D.
Koelmeyer
 
R.
Pouliot
 
N.
Palatsides
 
M.
Ellis
 
S.
, et al 
A role for pericytes as microenvironmental regulators of human skin tissue regeneration
J. Clin. Invest.
2009
, vol. 
119
 (pg. 
2795
-
2806
)
[PubMed]
150
Rodeheffer
 
M. S.
Birsoy
 
K.
Friedman
 
J. M.
 
Identification of white adipocyte progenitor cells in vivo
Cell.
2008
, vol. 
135
 (pg. 
240
-
249
)
[PubMed]
151
Berry
 
R.
Rodeheffer
 
M. S.
 
Characterization of the adipocyte cellular lineage in vivo
Nat. Cell Biol.
2013
, vol. 
15
 (pg. 
302
-
308
)
[PubMed]
152
Benezech
 
C.
Mader
 
E.
Desanti
 
G.
Khan
 
M.
Nakamura
 
K.
White
 
A.
Ware
 
C. F.
Anderson
 
G.
Caamano
 
J. H.
 
Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells
Immunity
2012
, vol. 
37
 (pg. 
721
-
734
)
[PubMed]
153
Daquinag
 
A. C.
Zhang
 
Y.
Amaya-Manzanares
 
F.
Simmons
 
P. J.
Kolonin
 
M. G.
 
An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells
Cell Stem Cell
2011
, vol. 
9
 (pg. 
74
-
86
)
[PubMed]
154
Sanchez-Gurmaches
 
J.
Hung
 
C. M.
Sparks
 
C. A.
Tang
 
Y.
Li
 
H.
Guertin
 
D. A.
 
PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors
Cell Metab.
2012
, vol. 
16
 (pg. 
348
-
362
)
[PubMed]
155
Uezumi
 
A.
Fukada
 
S.
Yamamoto
 
N.
Takeda
 
S.
Tsuchida
 
K.
 
Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle
Nat. Cell Biol.
2010
, vol. 
12
 (pg. 
143
-
152
)
[PubMed]
156
Festa
 
E.
Fretz
 
J.
Berry
 
R.
Schmidt
 
B.
Rodeheffer
 
M.
Horowitz
 
M.
Horsley
 
V.
 
Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling
Cell.
2011
, vol. 
146
 (pg. 
761
-
771
)
[PubMed]
157
Morikawa
 
S.
Mabuchi
 
Y.
Kubota
 
Y.
Nagai
 
Y.
Niibe
 
K.
Hiratsu
 
E.
Suzuki
 
S.
Miyauchi-Hara
 
C.
Nagoshi
 
N.
Sunabori
 
T.
, et al 
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
J. Exp. Med.
2009
, vol. 
206
 (pg. 
2483
-
2496
)
[PubMed]
158
Marcus
 
R. L.
Addison
 
O.
Kidde
 
J. P.
Dibble
 
L. E.
Lastayo
 
P. C.
 
Skeletal muscle fat infiltration: impact of age, inactivity, and exercise
J. Nutr. Health Aging
2010
, vol. 
14
 (pg. 
362
-
366
)
[PubMed]
159
Nakagawa
 
Y.
Hattori
 
M.
Harada
 
K.
Shirase
 
R.
Bando
 
M.
Okano
 
G.
 
Age-related changes in intramyocellular lipid in humans by in vivo H-MR spectroscopy
Gerontology
2007
, vol. 
53
 (pg. 
218
-
223
)
[PubMed]
160
Gallagher
 
D.
Kuznia
 
P.
Heshka
 
S.
Albu
 
J.
Heymsfield
 
S. B.
Goodpaster
 
B.
Visser
 
M.
Harris
 
T. B.
 
Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue
Am. J. Clin. Nutr.
2005
, vol. 
81
 (pg. 
903
-
910
)
[PubMed]
161
Cree
 
M. G.
Newcomer
 
B. R.
Katsanos
 
C. S.
Sheffield-Moore
 
M.
Chinkes
 
D.
Aarsland
 
A.
Urban
 
R.
Wolfe
 
R. R.
 
Intramuscular and liver triglycerides are increased in the elderly
J. Clin. Endocrinol. Metab.
2004
, vol. 
89
 (pg. 
3864
-
3871
)
[PubMed]
162
Okell
 
T. W.
Chappell
 
M. A.
Kelly
 
M. E.
Jezzard
 
P.
 
Cerebral blood flow quantification using vessel-encoded arterial spin labeling
J. Cereb. Blood Flow Metab.
2013
, vol. 
33
 (pg. 
1716
-
1724
)
[PubMed]
163
Shen
 
Q.
Wang
 
Y.
Kokovay
 
E.
Lin
 
G.
Chuang
 
S. M.
Goderie
 
S. K.
Roysam
 
B.
Temple
 
S.
 
Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions
Cell Stem Cell
2008
, vol. 
3
 (pg. 
289
-
300
)
[PubMed]
164
Tavazoie
 
M.
Van der Veken
 
L.
Silva-Vargas
 
V.
Louissaint
 
M.
Colonna
 
L.
Zaidi
 
B.
Garcia-Verdugo
 
J. M.
Doetsch
 
F.
 
A specialized vascular niche for adult neural stem cells
Cell Stem Cell
2008
, vol. 
3
 (pg. 
279
-
288
)
[PubMed]
165
Mirzadeh
 
Z.
Merkle
 
F. T.
Soriano-Navarro
 
M.
Garcia-Verdugo
 
J. M.
Alvarez-Buylla
 
A.
 
Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain
Cell Stem Cell
2008
, vol. 
3
 (pg. 
265
-
278
)
[PubMed]
166
Vasudevan
 
A.
Long
 
J. E.
Crandall
 
J. E.
Rubenstein
 
J. L.
Bhide
 
P. G.
 
Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain
Nat. Neurosci.
2008
, vol. 
11
 (pg. 
429
-
439
)
[PubMed]
167
Diaz-Flores
 
L.
Gutierrez
 
R.
Madrid
 
J. F.
Varela
 
H.
Valladares
 
F.
Acosta
 
E.
Martin-Vasallo
 
P.
Flores
 
L.
 
Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
Histol. Histopathol.
2009
, vol. 
24
 (pg. 
909
-
969
)
[PubMed]
168
Ishitsuka
 
K.
Ago
 
T.
Arimura
 
K.
Nakamura
 
K.
Tokami
 
H.
Makihara
 
N.
Kuroda
 
J.
Kamouchi
 
M.
Kitazono
 
T.
 
Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection
Microvasc. Res.
2012
, vol. 
83
 (pg. 
352
-
359
)
[PubMed]
169
Dore-Duffy
 
P.
Owen
 
C.
Balabanov
 
R.
Murphy
 
S.
Beaumont
 
T.
Rafols
 
J. A.
 
Pericyte migration from the vascular wall in response to traumatic brain injury
Microvasc. Res.
2000
, vol. 
60
 (pg. 
55
-
69
)
[PubMed]
170
Yamashima
 
T.
Tonchev
 
A. B.
Vachkov
 
I. H.
Popivanova
 
B. K.
Seki
 
T.
Sawamoto
 
K.
Okano
 
H.
 
Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia
Hippocampus
2004
, vol. 
14
 (pg. 
861
-
875
)
[PubMed]
171
Paul
 
G.
Ozen
 
I.
Christophersen
 
N. S.
Reinbothe
 
T.
Bengzon
 
J.
Visse
 
E.
Jansson
 
K.
Dannaeus
 
K.
Henriques-Oliveira
 
C.
Roybon
 
L.
, et al 
The adult human brain harbors multipotent perivascular mesenchymal stem cells
PLoS One
2012
, vol. 
7
 pg. 
e35577
 
[PubMed]
172
Su
 
Z.
Niu
 
W.
Liu
 
M. L.
Zou
 
Y.
Zhang
 
C. L.
 
In vivo conversion of astrocytes to neurons in the injured adult spinal cord
Nat. Commun.
2014
, vol. 
5
 pg. 
3338
 
[PubMed]
173
Niu
 
W.
Zang
 
T.
Zou
 
Y.
Fang
 
S.
Smith
 
D. K.
Bachoo
 
R.
Zhang
 
C. L.
 
In vivo reprogramming of astrocytes to neuroblasts in the adult brain
Nat. Cell Biol.
2013
, vol. 
15
 (pg. 
1164
-
1175
)
[PubMed]
174
Guo
 
Z.
Zhang
 
L.
Wu
 
Z.
Chen
 
Y.
Wang
 
F.
Chen
 
G.
 
In Vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model
Cell Stem Cell
2014
, vol. 
14
 (pg. 
188
-
202
)
[PubMed]
175
Montiel-Eulefi
 
E.
Nery
 
A. A.
Rodrigues
 
L. C.
Sanchez
 
R.
Romero
 
F.
Ulrich
 
H.
 
Neural differentiation of rat aorta pericyte cells
Cytometry A
2012
, vol. 
81
 (pg. 
65
-
71
)
[PubMed]
176
Pinzani
 
M.
Failli
 
P.
Ruocco
 
C.
Casini
 
A.
Milani
 
S.
Baldi
 
E.
Giotti
 
A.
Gentilini
 
P.
 
Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients
J. Clin. Invest.
1992
, vol. 
90
 (pg. 
642
-
646
)
[PubMed]
177
Sato
 
M.
Suzuki
 
S.
Senoo
 
H.
 
Hepatic stellate cells: unique characteristics in cell biology and phenotype
Cell Struct. Funct.
2003
, vol. 
28
 (pg. 
105
-
112
)
[PubMed]
178
de Leeuw
 
A. M.
McCarthy
 
S. P.
Geerts
 
A.
Knook
 
D. L.
 
Purified rat liver fat-storing cells in culture divide and contain collagen
Hepatology
1984
, vol. 
4
 (pg. 
392
-
403
)
[PubMed]
179
Friedman
 
S. L.
Roll
 
F. J.
Boyles
 
J.
Bissell
 
D. M.
 
Hepatic lipocytes: the principal collagen-producing cells of normal rat liver
Proc. Natl. Acad. Sci. U.S.A.
1985
, vol. 
82
 (pg. 
8681
-
8685
)
[PubMed]
180
Kisseleva
 
T.
Cong
 
M.
Paik
 
Y.
Scholten
 
D.
Jiang
 
C.
Benner
 
C.
Iwaisako
 
K.
Moore-Morris
 
T.
Scott
 
B.
Tsukamoto
 
H.
, et al 
Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
Proc. Natl. Acad. Sci. U.S.A.
2012
, vol. 
109
 (pg. 
9448
-
9453
)
[PubMed]
181
Mederacke
 
I.
Hsu
 
C. C.
Troeger
 
J. S.
Huebener
 
P.
Mu
 
X.
Dapito
 
D. H.
Pradere
 
J. P.
Schwabe
 
R. F.
 
Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology
Nat. Commun.
2013
, vol. 
4
 pg. 
2823
 
[PubMed]
182
Henderson
 
N. C.
Arnold
 
T. D.
Katamura
 
Y.
Giacomini
 
M. M.
Rodriguez
 
J. D.
McCarty
 
J. H.
Pellicoro
 
A.
Raschperger
 
E.
Betsholtz
 
C.
Ruminski
 
P. G.
, et al 
Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs
Nat. Med.
2013
, vol. 
19
 (pg. 
1617
-
1624
)
[PubMed]
183
LeBleu
 
V. S.
Taduri
 
G.
O’Connell
 
J.
Teng
 
Y.
Cooke
 
V. G.
Woda
 
C.
Sugimoto
 
H.
Kalluri
 
R.
 
Origin and function of myofibroblasts in kidney fibrosis
Nat. Med.
2013
, vol. 
19
 (pg. 
1047
-
1053
)
[PubMed]
184
Humphreys
 
B. D.
Lin
 
S. L.
Kobayashi
 
A.
Hudson
 
T. E.
Nowlin
 
B. T.
Bonventre
 
J. V.
Valerius
 
M. T.
McMahon
 
A. P.
Duffield
 
J. S.
 
Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis
Am. J. Pathol.
2010
, vol. 
176
 (pg. 
85
-
97
)
[PubMed]
185
Hung
 
C.
Linn
 
G.
Chow
 
Y. H.
Kobayashi
 
A.
Mittelsteadt
 
K.
Altemeier
 
W. A.
Gharib
 
S. A.
Schnapp
 
L. M.
Duffield
 
J. S.
 
Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis
Am. J. Respir. Crit. Care Med.
2013
, vol. 
188
 (pg. 
820
-
830
)
[PubMed]
186
Rock
 
J. R.
Barkauskas
 
C. E.
Cronce
 
M. J.
Xue
 
Y.
Harris
 
J. R.
Liang
 
J.
Noble
 
P. W.
Hogan
 
B. L.
 
Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition
Proc. Natl. Acad. Sci. U.S.A.
2011
, vol. 
108
 (pg. 
E1475
-
E1483
)
[PubMed]
187
Faulkner
 
J. L.
Szcykalski
 
L. M.
Springer
 
F.
Barnes
 
J. L.
 
Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis
Am. J. Pathol.
2005
, vol. 
167
 (pg. 
1193
-
1205
)
[PubMed]
188
Lin
 
S. L.
Kisseleva
 
T.
Brenner
 
D. A.
Duffield
 
J. S.
 
Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney
Am. J. Pathol.
2008
, vol. 
173
 (pg. 
1617
-
1627
)
[PubMed]
189
Slezak
 
M.
Goritz
 
C.
Niemiec
 
A.
Frisen
 
J.
Chambon
 
P.
Metzger
 
D.
Pfrieger
 
F. W.
 
Transgenic mice for conditional gene manipulation in astroglial cells
Glia
2007
, vol. 
55
 (pg. 
1565
-
1576
)
[PubMed]
190
Ehm
 
O.
Goritz
 
C.
Covic
 
M.
Schaffner
 
I.
Schwarz
 
T. J.
Karaca
 
E.
Kempkes
 
B.
Kremmer
 
E.
Pfrieger
 
F. W.
Espinosa
 
L.
, et al 
RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus
J. Neurosci.
2010
, vol. 
30
 (pg. 
13794
-
13807
)
[PubMed]
191
Shibata
 
T.
Yamada
 
K.
Watanabe
 
M.
Ikenaka
 
K.
Wada
 
K.
Tanaka
 
K.
Inoue
 
Y.
 
Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord
J. Neurosci.
1997
, vol. 
17
 (pg. 
9212
-
9219
)
[PubMed]
192
Nees
 
S.
Weiss
 
D. R.
Senftl
 
A.
Knott
 
M.
Forch
 
S.
Schnurr
 
M.
Weyrich
 
P.
Juchem
 
G.
 
Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro
Am. J. Physiol. Heart Circ. Physiol.
2012
, vol. 
302
 (pg. 
H69
-
H84
)
193
Edgley
 
A. J.
Krum
 
H.
Kelly
 
D. J.
 
Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta
Cardiovasc. Ther.
2012
, vol. 
30
 (pg. 
e30
-
e40
)
[PubMed]
194
Amselgruber
 
W. M.
Schafer
 
M.
Sinowatz
 
F.
 
Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study
Anat. Histol. Embryol.
1999
, vol. 
28
 (pg. 
157
-
166
)
[PubMed]
195
Kale
 
S.
Hanai
 
J.
Chan
 
B.
Karihaloo
 
A.
Grotendorst
 
G.
Cantley
 
L.
Sukhatme
 
V. P.
 
Microarray analysis of in vitro pericyte differentiation reveals an angiogenic program of gene expression
FASEB J.
2005
, vol. 
19
 (pg. 
270
-
271
)
[PubMed]
196
Darland
 
D. C.
Massingham
 
L. J.
Smith
 
S. R.
Piek
 
E.
Saint-Geniez
 
M.
D’Amore
 
P. A.
 
Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival
Dev. Biol.
2003
, vol. 
264
 (pg. 
275
-
288
)
[PubMed]
197
Virgintino
 
D.
Girolamo
 
F.
Errede
 
M.
Capobianco
 
C.
Robertson
 
D.
Stallcup
 
W. B.
Perris
 
R.
Roncali
 
L.
 
An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis
Angiogenesis
2007
, vol. 
10
 (pg. 
35
-
45
)
[PubMed]
198
Ozerdem
 
U.
Stallcup
 
W. B.
 
Early contribution of pericytes to angiogenic sprouting and tube formation
Angiogenesis
2003
, vol. 
6
 (pg. 
241
-
249
)
[PubMed]
199
Conway
 
E. M.
Collen
 
D.
Carmeliet
 
P.
 
Molecular mechanisms of blood vessel growth
Cardiovasc. Res.
2001
, vol. 
49
 (pg. 
507
-
521
)
[PubMed]
200
Fischer
 
C.
Schneider
 
M.
Carmeliet
 
P.
 
Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis
Handb. Exp. Pharmacol.
2006
(pg. 
157
-
212
)
201
Raza
 
A.
Franklin
 
M. J.
Dudek
 
A. Z.
 
Pericytes and vessel maturation during tumor angiogenesis and metastasis
Am. J. Hematol.
2010
, vol. 
85
 (pg. 
593
-
598
)
[PubMed]
202
Birbrair
 
A.
Zhang
 
T.
Wang
 
Z. M.
Messi
 
M. L.
Olson
 
J. D.
Mintz
 
A.
Delbono
 
O.
 
Type-2 pericytes participate in normal and tumoral angiogenesis
Am. J. Physiol. Cell Physiol.
2014
, vol. 
307
 (pg. 
C25
-
C38
)
[PubMed]
203
Birbrair
 
A.
Wang
 
Z. M.
Messi
 
M. L.
Enikolopov
 
G. N.
Delbono
 
O.
 
Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle
PLoS One
2011
, vol. 
6
 pg. 
e16816
 
[PubMed]
204
Birbrair
 
A.
Zhang
 
T.
Wang
 
Z. M.
Messi
 
M. L.
Enikolopov
 
G. N.
Mintz
 
A.
Delbono
 
O.
 
Skeletal muscle neural progenitor cells exhibit properties of NG2-glia
Exp. Cell Res.
2013
, vol. 
319
 (pg. 
45
-
63
)
[PubMed]
205
Carlson
 
B. M.
Faulkner
 
J. A.
 
Muscle transplantation between young and old rats: age of host determines recovery
Am. J. Physiol.
1989
, vol. 
256
 (pg. 
C1262
-
C1266
)
[PubMed]
206
McGeachie
 
J. K.
Grounds
 
M. D.
 
Retarded myogenic cell replication in regenerating skeletal muscles of old mice: an autoradiographic study in young and old BALBc and SJL/J mice
Cell Tissue Res.
1995
, vol. 
280
 (pg. 
277
-
282
)
[PubMed]
207
Conboy
 
I. M.
Conboy
 
M. J.
Smythe
 
G. M.
Rando
 
T. A.
 
Notch-mediated restoration of regenerative potential to aged muscle
Science
2003
, vol. 
302
 (pg. 
1575
-
1577
)
[PubMed]
208
Pan
 
L.
Chen
 
S.
Weng
 
C.
Call
 
G.
Zhu
 
D.
Tang
 
H.
Zhang
 
N.
Xie
 
T.
 
Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary
Cell Stem Cell
2007
, vol. 
1
 (pg. 
458
-
469
)
[PubMed]
209
Boyle
 
M.
Wong
 
C.
Rocha
 
M.
Jones
 
D. L.
 
Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis
Cell Stem Cell
2007
, vol. 
1
 (pg. 
470
-
478
)
[PubMed]
210
Voog
 
J.
Jones
 
D. L.
 
Stem cells and the niche: a dynamic duo
Cell Stem Cell
2010
, vol. 
6
 (pg. 
103
-
115
)
[PubMed]
211
Morrison
 
S. J.
Spradling
 
A. C.
 
Stem cells and niches: mechanisms that promote stem cell maintenance throughout life
Cell
2008
, vol. 
132
 (pg. 
598
-
611
)
[PubMed]
212
Gopinath
 
S. D.
Rando
 
T. A.
 
Stem cell review series: aging of the skeletal muscle stem cell niche
Aging Cell
2008
, vol. 
7
 (pg. 
590
-
598
)
[PubMed]
213
Barton-Davis
 
E. R.
Shoturma
 
D. I.
Musaro
 
A.
Rosenthal
 
N.
Sweeney
 
H. L.
 
Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function
Proc. Natl. Acad. Sci. U.S.A.
1998
, vol. 
95
 (pg. 
15603
-
15607
)
[PubMed]
214
Carlson
 
M. E.
Conboy
 
M. J.
Hsu
 
M.
Barchas
 
L.
Jeong
 
J.
Agrawal
 
A.
Mikels
 
A. J.
Agrawal
 
S.
Schaffer
 
D. V.
Conboy
 
I. M.
 
Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses
Aging Cell
2009
, vol. 
8
 (pg. 
676
-
689
)
[PubMed]
215
Carlson
 
M. E.
Hsu
 
M.
Conboy
 
I. M.
 
Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells
Nature
2008
, vol. 
454
 (pg. 
528
-
532
)
[PubMed]
216
Musaro
 
A.
McCullagh
 
K.
Paul
 
A.
Houghton
 
L.
Dobrowolny
 
G.
Molinaro
 
M.
Barton
 
E. R.
Sweeney
 
H. L.
Rosenthal
 
N.
 
Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle
Nat. Genet.
2001
, vol. 
27
 (pg. 
195
-
200
)
[PubMed]
217
Visser
 
M.
Goodpaster
 
B. H.
Kritchevsky
 
S. B.
Newman
 
A. B.
Nevitt
 
M.
Rubin
 
S. M.
Simonsick
 
E. M.
Harris
 
T. B.
 
Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons
J. Gerontol. A Biol. Sci. Med. Sci.
2005
, vol. 
60
 (pg. 
324
-
333
)
[PubMed]
218
Goodpaster
 
B. H.
Wolf
 
D.
 
Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes
Pediatr. Diabetes
2004
, vol. 
5
 (pg. 
219
-
226
)
[PubMed]
219
Kajstura
 
J.
Leri
 
A.
Finato
 
N.
Di Loreto
 
C.
Beltrami
 
C. A.
Anversa
 
P.
 
Myocyte proliferation in end-stage cardiac failure in humans
Proc. Natl. Acad. Sci. U.S.A.
1998
, vol. 
95
 (pg. 
8801
-
8805
)
[PubMed]
220
Beltrami
 
A. P.
Urbanek
 
K.
Kajstura
 
J.
Yan
 
S. M.
Finato
 
N.
Bussani
 
R.
Nadal-Ginard
 
B.
Silvestri
 
F.
Leri
 
A.
Beltrami
 
C. A.
Anversa
 
P.
 
Evidence that human cardiac myocytes divide after myocardial infarction
N. Engl. J. Med.
2001
, vol. 
344
 (pg. 
1750
-
1757
)
[PubMed]
221
Beltrami
 
C. A.
Finato
 
N.
Rocco
 
M.
Feruglio
 
G. A.
Puricelli
 
C.
Cigola
 
E.
Quaini
 
F.
Sonnenblick
 
E. H.
Olivetti
 
G.
Anversa
 
P.
 
Structural basis of end-stage failure in ischemic cardiomyopathy in humans
Circulation
1994
, vol. 
89
 (pg. 
151
-
163
)
[PubMed]
222
Narula
 
J.
Haider
 
N.
Virmani
 
R.
DiSalvo
 
T. G.
Kolodgie
 
F. D.
Hajjar
 
R. J.
Schmidt
 
U.
Semigran
 
M. J.
Dec
 
G. W.
Khaw
 
B. A.
 
Apoptosis in myocytes in end-stage heart failure
N. Engl. J. Med.
1996
, vol. 
335
 (pg. 
1182
-
1189
)
[PubMed]
223
Wynn
 
T. A.
 
Cellular and molecular mechanisms of fibrosis
J. Pathol.
2008
, vol. 
214
 (pg. 
199
-
210
)
[PubMed]
224
Bernasconi
 
P.
Torchiana
 
E.
Confalonieri
 
P.
Brugnoni
 
R.
Barresi
 
R.
Mora
 
M.
Cornelio
 
F.
Morandi
 
L.
Mantegazza
 
R.
 
Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine
J. Clin. Invest.
1995
, vol. 
96
 (pg. 
1137
-
1144
)
[PubMed]
225
Olson
 
L. E.
Soriano
 
P.
 
Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis
Dev. Cell.
2009
, vol. 
16
 (pg. 
303
-
313
)
[PubMed]
226
Andrae
 
J.
Gallini
 
R.
Betsholtz
 
C.
 
Role of platelet-derived growth factors in physiology and medicine
Genes Dev.
2008
, vol. 
22
 (pg. 
1276
-
1312
)
[PubMed]
227
Collins
 
C. A.
Zammit
 
P. S.
Ruiz
 
A. P.
Morgan
 
J. E.
Partridge
 
T. A.
 
A population of myogenic stem cells that survives skeletal muscle aging
Stem Cells
2007
, vol. 
25
 (pg. 
885
-
894
)
[PubMed]
228
Takeda
 
N.
Jain
 
R.
LeBoeuf
 
M. R.
Wang
 
Q.
Lu
 
M. M.
Epstein
 
J. A.
 
Interconversion between intestinal stem cell populations in distinct niches
Science
2011
, vol. 
334
 (pg. 
1420
-
1424
)
[PubMed]
229
Tian
 
H.
Biehs
 
B.
Warming
 
S.
Leong
 
K. G.
Rangell
 
L.
Klein
 
O. D.
de Sauvage
 
F. J.
 
A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
Nature
2011
, vol. 
478
 (pg. 
255
-
259
)
[PubMed]
230
Van Keymeulen
 
A.
Rocha
 
A. S.
Ousset
 
M.
Beck
 
B.
Bouvencourt
 
G.
Rock
 
J.
Sharma
 
N.
Dekoninck
 
S.
Blanpain
 
C.
 
Distinct stem cells contribute to mammary gland development and maintenance
Nature
2011
, vol. 
479
 (pg. 
189
-
193
)
[PubMed]
231
Yan
 
K. S.
Chia
 
L. A.
Li
 
X.
Ootani
 
A.
Su
 
J.
Lee
 
J. Y.
Su
 
N.
Luo
 
Y.
Heilshorn
 
S. C.
Amieva
 
M. R.
, et al 
The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations
Proc. Natl. Acad. Sci. U.S.A.
2012
, vol. 
109
 (pg. 
466
-
471
)
[PubMed]