The recent discovery of the G protein-coupled oestrogen receptor (GPER) presents new challenges and opportunities for understanding the physiology, pathophysiology and pharmacology of many diseases. This review will focus on the expression and function of GPER in hypertension, kidney disease, atherosclerosis, vascular remodelling, heart failure, reproduction, metabolic disorders, cancer, environmental health and menopause. Furthermore, this review will highlight the potential of GPER as a therapeutic target.

DISCOVERY OF GPER

The complexity of oestrogen signalling became apparent when some of its effects did not fit the time course for transcriptional signalling. Oestrogen receptors (ER) ERα and ERβ are classical steroid receptors that typically dimerize and translocate to the nucleus after ligand binding. Once in the nucleus, the receptors bind to oestrogen response elements or interact with other transcription factors to alter gene expression. In 1967 Szego and Davis [1] observed that intravenous administration of 17β-oestradiol more than doubles the amount of cyclic AMP in the uterus of ovariectomized female Sprague-Dawley rats in less than 1 min. Moreover, oestradiol stimulates mitogen-activated protein kinases (MAPK) such as ERK-1 and ERK-2 within 2 min in MCF-7 breast cancer cells [2], and oestradiol rapidly phosphorylates and activates nitric oxide synthase (NOS) in endothelial cells [3].

The presence of a plasma membrane-associated oestrogen-binding site was first demonstrated in 1977 by Pietras and Szego [4] using endometrial and liver cells. Oestrogen also binds to the outer membrane of spermatozoa [5] and the plasma membrane of human umbilical vein endothelial cells [6]. Furthermore, conjugated oestrogen that is membrane-impermeable rapidly activates the MAPK/ERK pathways despite its inability to reach intracellular ERα or ERβ [7]. These studies provide evidence that an oestrogen receptor is localized to the plasma membrane and initiates nongenomic effects, perhaps via a novel receptor.

In 1997, a cDNA screen identified an orphan G protein-coupled receptor named GPR30 in the ER positive breast cancer cell line MCF-7 that is not expressed in the ER negative breast cancer cell line MDA-MB-231 [8]. Oestradiol binds with nanomolar affinity to GPR30 in SKBR3 breast cancer cells that lack nuclear ERs and in HEK293 cells transfected with GPR30 [9]. Activation by oestrogen rapidly induces signalling molecules such as cyclic AMP [10], inositol trisphosphate (IP3) and Ca2+ [11] and activates the MAPK/ERK pathways [12]. Because multiple studies showed that this seven transmembrane receptor is activated by oestrogen, GPR30 was renamed G protein-coupled oestrogen receptor (GPER) [13]. Selective agonists [14] and antagonists [15,16] for GPER are commercially available, allowing investigation of the actions of this receptor that are distinct from ERα and ERβ.

GPER is ubiquitously expressed throughout the body, including the heart, brain, pancreas, skeletal muscle, kidney, vessels and reproductive organs [17]. The level of expression is influenced by tissue type, sex, disease and age. For example, the placenta has an abundance of GPER although skeletal muscle has very low expression [8]. In mesenteric resistance vessels, GPER protein is lower in age-matched males and 12-month-old females as compared with 3-month-old females [18]. Interestingly, vascular GPER is not sensitive to hormonal status, as ovariectomized rats maintain receptor expression and function. However, renal GPER expression is dependent on the oestrus cycle, with levels the highest during proestrus and oestrus and lowest during metaestrus [19]. Disease processes also regulate the expression of this receptor, as GPER is significantly up-regulated in lung cancer [20], endometriosis [21], and in the kidneys of salt-loaded mRen2 females [22]. Multiple GPER knockout models are now available to assist in determining a role for this receptor in physiology and pathophysiology [23].

GPER is not the only candidate for a membrane-bound oestrogen receptor, as there is a truncated isoform of ERα that also induces acute signalling. ERα-36 is a novel variant of the full-length 66 kDa ERα that lacks the transcriptional activation domains but maintains the ligand binding domain [24]. ERα-36 activates the MAPK/ERK pathways [25] and is necessary for rapid activation of NOS by 17β-oestradiol in endothelial and airway epithelial cells [26]. Therefore, there are most likely multiple membrane-bound receptors that mediate the acute actions of oestrogen.

HYPERTENSION AND KIDNEY DISEASE

Women have a lower incidence of hypertension in comparison with age-matched men until menopause, suggesting that oestrogen counteracts increases in blood pressure [27]. The ability of oestrogen to modulate blood pressure is observed in numerous experimental animal models of hypertension [28]. We and others have recently investigated whether GPER mediates the anti-hypertensive actions of oestrogen. In experimental animal studies, activation of GPER using the selective agonist G-1 decreases blood pressure acutely in male Sprague-Dawley rats [29] and chronically in oestrogen-deficient female mRen2 rats [30]. However, GPER does not alter blood pressure in intact female mRen2 rats, indicating that the role of GPER is unmasked only when the endogenous ligand is absent. The contribution of GPER to blood pressure may also be dependent on age, as no difference in blood pressure is detected in female GPER knockout compared with wild-type mice until 9 months of age [31]. In humans, a single nucleotide polymorphism of GPER produces a hypofunctional allele, and female but not male carriers of the GPER P16L variant have a significantly greater systolic blood pressure [32].

In many cases a cause or consequence of hypertension is vascular dysfunction. GPER is expressed in endothelial and smooth muscle cells of the carotid artery, middle cerebral arteries and aorta [30,3336]. In vascular preparations from rat, mouse, pig and human, the selective agonist G-1 induces dose-dependent acute vasodilation that is not different from oestradiol, however, the contribution of endothelium compared with smooth muscle is dependent on the vascular bed being tested [29,33,37]. In female mesenteric arteries, selective GPER activation promotes vasodilation via endothelial-derived nitric oxide and smooth muscle cell-initiated cyclic adenosine monophosphate (cAMP) [34]. However, in rat carotid arteries GPER-induced vasodilation is completely endothelium-dependent [35], and in coronary arteries the response is entirely endothelium-independent [38]. These differing signalling pathways for GPER may result from alterations in smooth muscle compared with endothelial expression levels of the receptor, which differ according to vascular bed [39]. Regardless, the ability of GPER to directly induce vasodilation is well-established in animal models as well as in human arteries [40,41].

GPER activation not only induces direct vasodilation but also counteracts the response to a variety of other vasoconstrictors, which may provide protection against hypertension. GPER-deficient mice have enhanced prostanoid production and vasoconstriction [42,43] and elevated responses to endothelin-1 in carotid arteries [44]. The GPER agonist G-1 attenuates coronary artery contractions to endothelin-1 to the same extent as the GPER agonist, and ERα/ERβ antagonist ICI 182780 further demonstrating the independent actions of this membrane receptor in vessel function [37]. In contrast, GPER is suggested to mediate the actions of aldosterone, a pro-hypertensive molecule of the RAS. Aldosterone-induced ERK phosphorylation in denuded aortic tissue from male Wistar-Kyoto rats is equally inhibited by a GPER or mineralocorticoid receptor antagonist [36], and aldosterone-mediated increases in vasoconstriction are mediated by GPER in mesenteric arteries from female mice [45]. Since specific binding of aldosterone to GPER has yet to be demonstrated, it is unknown how these systems interact. Regardless, the influence of GPER in mediating the rapid effects of aldosterone introduces a novel pathway by which oestrogen modulates RAS activation.

The kidney plays an important role in long term blood pressure control through volume homoeostasis and is vulnerable to hypertension-induced damage. The loss of oestrogen during menopause is associated with increased salt-sensitivity and reduced glomerular filtration rate (GFR) [46]. In mice, oestradiol is protective against renal injury, and genetic deletion of ERα or ERβ does not attenuate this protection suggesting an alternative receptor [47]. Whereas the initial report of renal GPER expression showed the highest levels in the renal pelvis [48], other studies show GPER expression predominantly in tubular epithelial cells [19,22,49]. Chronic G-1 treatment in salt-sensitive female mRen2 rats increases estimated GFR and decreases renal hypertrophy and proteinuria, perhaps by increasing megalin expression and reducing reactive oxygen species in proximal tubules [22]. GPER's renoprotective effects may also result from reductions in the permeability of glomerular endothelium [50] and buffering of elevated perfusion pressure [51]. Taken together these data suggest that GPER is protective during perturbations of the kidney and may prove to be an important drug target for kidney disease, especially in postmenopausal women.

ATHEROSCLEROSIS AND VASCULAR REMODELLING

Female sex hormones are protective against atherosclerosis. Oestrogen supplementation in ovariectomized monkeys reduces the formation of plaques independent of changes in total plasma cholesterol or HDL levels [52]. In contrast, protection against the development of atherosclerotic plaques by oestrogen in intact female monkeys is associated with a concomitant decrease in plasma HDL [53]. Oestradiol also reduces plasma cholesterol and lesion size in ovariectomized apolipoprotein E knockout mice but not in mice deficient in ERα [54]. Despite this indication that ERα is the main mediator of atherosclerotic protection, oestradiol still reduces advanced lesion characteristics suggesting non-ERα mechanisms. Moreover, mice deficient in ERα and fed an atherogenic diet maintain oestradiol-induced protection [55]. Lesion size is exacerbated in the aortas of intact and ovariectomized female GPER knockout mice, whereas treatment with the selective agonist G-1 reduces atherosclerosis in ovariectomized mice [56]. The beneficial effects of GPER in this model are associated with a reduction in macrophage and T-cell recruitment, indicating an anti-inflammatory mechanism.

Pathological vascular remodelling is most commonly induced by surgical interventions such as angioplasty and stent placement. Women have a decreased risk of death and restenosis after coronary stent placement compared with men, suggesting sex differences in neointima formation after vascular injury [57]. Evidence from animal models suggests that these differences are, in part, mediated by endogenous oestrogens. Female Sprague-Dawley rats are protected from carotid balloon injury compared with males, and this sex difference is abolished by ovariectomy but not castration [58]. Local delivery of oestradiol decreases coronary angioplasty-induced neointimal hyperplasia in pigs [59,60]. These studies led to the development of oestrogen-eluting stents, which reduce neointimal proliferation and induce re-endothelialization in rabbit aorta [61] and porcine coronary artery [62]. This protective effect of oestrogen on vascular injury is evident in both ERα [63] and ERβ [63] knockout mice, indicating that another receptor may mediate this hormone's effects in the vasculature. Although there are to date no studies looking at the role of GPER in neointima formation, mesenteric arteries from female GPER knockout mice have an increased media-to-lumen ratio at 9 months of age, an effect associated with increased blood pressure [31].

In vitro studies indicate that GPER has anti-proliferative, anti-inflammatory and antioxidant actions which may contribute to vascular protection. The agonist G-1 attenuates serum-induced proliferation of human vascular smooth muscle cells [29] and promotes differentiation and suppresses proliferation of human and porcine coronary artery smooth muscle cells [64]. G-1 reduces inflammatory mediators in macrophages and vascular smooth muscle cells from both young and old female C57BL/6 mice, despite the fact that oestradiol is anti-inflammatory only in young cells [65]. GPER is expressed in murine macrophages, and activation reduces the production of inflammatory cytokines [66]. GPER also reduces inflammatory molecules in endothelial cells, an effect that is absent when the other ERs are activated [67]. GPER decreases in NADPH-stimulated superoxide levels in carotid and intracranial cerebral arteries, indicating antioxidant effects as well [35]. Since oestradiol's vascular anti-inflammatory effects are altered by aging and receptor subtype, selective GPER activation may provide an alternative pathway for protection against vascular remodelling and atherosclerosis.

HEART FAILURE

Adult men are more likely to have heart failure until age 80, when the incidence in women surpasses that of men [27]. Interestingly, postmenopausal women are twice as likely to have diastolic heart failure, or heart failure with preserved ejection fraction [68]. Sex differences are also observed in animal models of heart failure. For example, aortic banding induces heart failure to a greater extent in male compared with female Wistar rats [69]. In heart failure induced by arteriovenous shunt, mortality is 2.5% in female rats compared with 24.5% in males [70]. Moreover, ovariectomy increases the incidence of congestive heart failure while oestrogen prevents disease progression [71]. In a transverse aortic constriction model, female protection is lost in ERβ but not ERα knockout mice [72], clearly supporting a role for membrane-initiated oestrogen signalling in cardiac health [73].

GPER is expressed in cardiac myocytes [74] and fibroblasts [75]. In intact female mRen2 rats, activation of GPER attenuates diastolic dysfunction induced by a high salt diet [76]. G-1 treatment in ovariectomized mRen2 females on a normal salt diet reduces left ventricular filling pressure, left ventricular mass, wall thickness and interstitial collagen deposition [74]. The cardioprotective benefits of GPER extend beyond female animal models, as G-1 administration following ischaemia reperfusion in male mice decreases myocardial infarct size and improves left ventricular pressure [77]. G-1 administered prior to myocardial ischaemia reperfusion also protects both male and female Sprague-Dawley rats by improving contractile function and reducing infarct size [78]. In contrast with these studies showing protective effects of GPER in both sexes, GPER deletion impairs left ventricular cardiac function in males but not females [79]. Some cardioprotective effects of GPER may be centrally mediated, as G-1 microinjection into the nucleus ambiguous of male Wistar rats decreases cardiac vagal tone [80]. Overall, the cardioprotective effects of the selective GPER agonist seem to be consistent with those of non-selective oestrogen receptor stimulation.

Mechanisms for GPER-induced cardioprotection include decreased myocyte hypertrophy in salt-loaded mRen2 [76] and decreased natriuretic peptides and cardiac NADPH oxidase expression in ovariectomized mRen2 [74]. G-1 treatment decreases the proliferation of cardiac fibroblasts and the expression of cell cycle proteins CDK1 and cyclin B1 [75]. In female mRen2 rats, GPER activation attenuates ovariectomy-induced increases in CDK1 and cyclin B1, proliferation marker Ki-67, and fibroblast marker vimentin in the left ventricle [81]. In ovariectomized female Sprague-Dawley rats with isoproterenol-induced heart failure, G-1 administration increases left ventricular developed pressure and decreases left ventricular end diastolic pressure, an effect that was comparable to non-selective oestrogen treatment [82]. These benefits were associated with a concomitant decrease in cardiac fibrosis and enhanced myocardial contraction, suggesting that the cardioprotective effects of oestrogen could be attributed to GPER.

REPRODUCTION

Oestrogen is an important regulator of reproductive physiology, but the role of GPER is less clear. GPER expression is considerably lower than ERα in the ovary, uterus and mammary gland [83] and is absent from granulosa, mammary and uterine epithelial cells of LacZ reporter mice [84]. In female rhesus monkeys, GPER is expressed in gonadotropin-releasing hormone neurons suggesting a role for this receptor in central reproductive signalling [85]. In humans, endometrial GPER gene expression varies across the menstrual cycle with lowest levels during the secretory phase, a pattern similar to that of ERα [21,86]. GPER expression is increased in uterine leiomyomas [87] and is also up-regulated in endometriosis [21], suggesting that certain disease states regulate levels of this receptor.

GPER is not necessary for fetal development since genetic deletion is not embryonically lethal and does not impair fertility or sexual development [31,83]. Uterotrophic responses to oestrogen are also unaltered between GPER-deficient and wild-type mice [88]. Moreover, we and others have shown that chronic in vivo treatment with the selective agonist G-1 does not alter uterine wet weight [30,56]. In CD-1 mice, GPER activation alone does not alter uterine weight but antagonizes oestrogenic effects on uterine cell proliferation by attenuating ERα phosphorylation [89]. In contrast, G-1 administration in ovariectomized C57BL/6 mice produces a modest increase (3–4-fold) in the proliferative index of uterine epithelia as compared with oestrogen (17-fold increase) [16], suggesting effects on uterine cell proliferation but not imbibition. In cultured endometrial cells, GPER activation increases whereas inhibition decreases cell proliferation and AKT phosphorylation [90]. Overall, these results characterize a complex relationship between oestrogen and its receptors and a gap in understanding their functions in uterine physiology.

The role of GPER in pregnancy is also not clear. GPER is expressed in the myometrium of female Sprague-Dawley rats where it mediates depolarization and contraction [91]. Oestradiol-induced vasorelaxation in human placental and myometrial arteries is independent of GPER activation [92]. GPER mRNA levels in human myometrium do not change during labour, however myometrial strips from non-labouring women treated with either G-1 or oestradiol have enhanced contractility [93]. In males, GPER is expressed in the apical membranes of epididymal epithelial cells [94] and localized to seminiferous tubules and Sertoli cells [95]. Testicular biopsies from infertile men exhibit reduced or absent peritubular GPER expression compared with men with normal spermatogenesis, supporting a role for GPER in spermatogenesis and fertility [96]. In adult male Sprague-Dawley rats, treatment with either the GPER agonist G-1 or oestrogen in luteinizing hormone-stimulated Leydig cells dropped testosterone production by 20%, providing evidence that GPER may modulate steroidogenesis [97]. There is still much to be learned about the function of GPER in normal reproduction and whether targeting this receptor could provide benefits during abnormal or disease states.

METABOLIC DISORDERS

Oestrogen improves the diabetic condition and plays an important role in metabolic regulation [98]. Oestrogen deficiency after menopause negatively influences adipose tissue distribution and metabolism [99], whereas oestradiol administration ameliorates weight gain and reduces adipocyte size in ovariectomized animal models [100]. Oestrogen also preserves β-cell survival and function in multiple animal models of diabetes [101]. Interestingly, oestradiol has protective effects in cultured islets even when ERα and ERβ are absent, suggesting an alternative pathway for oestrogen's actions [102]. GPER is expressed in whole adipose tissue and isolated adipocytes of both male and female mice [103], in isolated mouse and human pancreatic islets [102], as well as cultured pancreatic β-cells [104].

Male and female GPER knockout mice display increased body weight, subcutaneous fat and total adipose tissue compared with wild-type mice fed either standard chow [29] or a phytoestrogen-free diet [103]. In contrast, Martensson et al. [31] reported that genetic deletion of GPER reduces body weight in females with no alterations in males and correlates with decreased skeletal growth rather than alterations in adiposity. In Gpr30-lacZ mice fed either a normal or high fat diet, body weight, body mass composition and glucose tolerance are not altered in males or females [79]. However, these female knockout mice have reduced plasma high density lipoproteins and increased fat content in the liver compared with wild-type controls, with no alterations in males. In yet another GPER knockout strain, oestradiol decreases fat mass even when GPER is deleted suggesting an ERα or ERβ effect [88]. Clearly, different conclusions about the role of GPER in adiposity can be drawn depending on the strain of GPER knockout mice utilized and are more thoroughly reviewed elsewhere [105].

Female GPER knockout mice have elevated plasma glucose levels, a diminished first-phase insulin response and depressed glucagon levels [31]. Isolated pancreatic islets from these same mice display decreased insulin expression and release. Similarly, male GPER knockout mice exhibit reduced glucose tolerance and insulin resistance [106]. GPER-deficient males also have increased total and subcutaneous fat, circulating cholesterol and triacylglycerols, and fasting insulin levels compared with wild-type controls. The importance of GPER in mediating glucose homoeostasis is further confirmed in vitro, as its agonist G-1 stimulates insulin and suppresses glucagon in isolated female islets [107]. Moreover, these responses can be blocked by a GPER antagonist and are absent from islets isolated from female GPER knockout mice [108]. In patients with type 1 diabetes mellitus, pancreatic islet transplantation has the potential to restore endogenous insulin production and glycaemic stability [109]. Interestingly, administration of the GPER agonist G-1 to male mice following islet transplantation improves blood glucose and islet engraftment [110]. Overall, this work points to a critical role that oestrogen and GPER play in maintaining body weight and glucose homoeostasis, and suggests a more prominent role in females compared with males. Understanding the consequences of GPER dysfunction may be a potential target in treating metabolic disorders.

CANCER

The impact of GPER on cancer cell growth depends on the cancer type and tissue target. GPER stimulates the proliferation of ovarian and breast tumour cells by inducing the expression of c-fos [111] but inhibits the proliferation of both oestrogen receptor-negative [112] and positive breast cancer cells [113]. GPER-induced activation of c-jun and c-fos attenuates the growth of prostate cancer cells [114], whereas in benign prostatic hyperplasia oestrogen promotes disease progression via a non-genomic pathway [115]. GPER also influences the tumour microenvironment, for example by reducing the levels of onco-suppressor Runx1 in cancer-associated fibroblasts [116]. GPER may mediate hypoxic signalling, as its promoter region contains a hypoxia-inducible factor (HIF)-1α responsive element [117]. This mechanism may promote tumour growth as well as exacerbate other diseases characterized by a low oxygen environment [118]. Although GPER disrupts microtubule formation in normal endothelial cells [119], it promotes tube formation in endothelial cells conditioned with media from breast cancer cells [120]. Therefore, the impact of GPER on cellular processes is extremely heterogeneous and must be individually evaluated for each type of cancer.

The role of GPER in breast cancer has been reviewed more thoroughly elsewhere [121]. GPER-positive breast tumours occur at a higher frequency (68.5%) compared with ER-positive cells (43%) in inflammatory breast cancer, a rare but aggressive form of cancer characterized by rapid proliferation and resistance to endocrine therapy [122]. Co-expression of ER and GPER is associated with better patient overall survival whereas the absence of ER or GPER worsens the outcome. Although GPER expression is unaltered during breast cancer progression, levels are reduced from normal tissue and correlate with overall survival, indicating that GPER may play an important role in tumour suppression [123]. Approximately 80% of breast cancers are oestrogen receptor positive, and anti-oestrogenic compounds are standard treatment [124].

Tamoxifen [a selective ER modulator or selective oestrogen receptor modulator (SERM)] is the most widely used drug in premenopausal women, however some cancers are initially resistant or develop drug resistance [125]. Complications with tamoxifen may arise because of its mixed agonist/antagonist activity at GPER compared with ERs. For example, tamoxifen-resistant MCF-7 breast cancer cells maintain a proliferative response to oestrogen by promoting translocation of GPER to the cell membrane and enhancing GPER signalling [126]. GPER activation also increases aromatase expression, which may contribute to sustained growth and progression in tamoxifen-resistant breast cancer cells [127]. These studies indicating a role for GPER in tamoxifen-resistance could be used to develop adjuvant therapies for this complex disease and are reviewed in greater depth elsewhere [128].

ENVIRONMENTAL HEALTH

Since environmental oestrogens such as bisphenol A (BPA), nonylphenol, dichlorodiphenyltrichloroethane (DDT) and genistein bind to GPER, these xenoestrogens may promote or antagonize GPER signalling [129,130]. BPA is a widely used industrial compound that induces negative consequences on reproductive and developmental health [131]. BPA also induces GPER gene and protein expression in Sertoli cells of male mice [132] and spermatogonial GC-1 cells [133]. When GPER is silenced or inhibited, BPA no longer stimulates proliferation of murine ERβ negative spermatogonial GC-1 cells [134] or mouse immature Sertoli (TM4) cells [132]. DDT is a synthetic pesticide that disrupts oestrogenic actions by binding to oestrogen receptors [129]. In cultured mouse hippocampal cells, DDT decreases GPER protein levels whereas G-1 attenuates DDT-stimulated caspase activity [135]. Genistein is an isoflavone derived from plants that is often used as a ‘naturally occurring’ oestrogen therapy and stimulates normal uterine proliferation [136]. Genistein treatment of human periodontal ligament cells delays the ability of cytokine IL-1β to induce MAPKs, whereas inhibition of GPER eliminates this effect [137].

GPER may be an important link between exposure to environmental chemicals and cancer. For example, atrazine is an herbicide associated with an increased risk for ovarian and breast cancer, and GPER mediates the negative effects of this chemical in both breast cancer cells and cancer-associated fibroblasts [138]. Likewise, cadmium induces proliferation in SKBR3 breast cancer cells that contain GPER but lack ERs, and this effect is lost when GPER signalling is inhibited [139]. BPA-induced cell proliferation of lung cancer cells is also mediated by GPER but not ERα/ERβ [140]. Genistein signals via GPER to promote endometrial cancer [141], and icariin and icaritin, which have a similar structure to genistein, are traditional Chinese herbs that stimulate proliferation of breast carcinoma cells via GPER [142].

Exposure to endocrine disruptors poses further concerns when considering the role of oestrogen in cardiovascular health. Nonylphenol is an extensively used compound in both commercial and household products that also binds GPER and induces adenylyl cyclase activity [129]. In the heart, nonylphenol has non-monotonic effects on myocardial contractility, and a GPER antagonist prevents low but not high dose effects [143]. BPA also induces negative effects on the cardiac extracellular matrix and the baroreflex [144], but whether these effects occur via GPER is yet to be determined. These studies strongly indicate a role for GPER in the pathophysiological actions of environmental oestrogens.

MENOPAUSE

Numerous animal studies demonstrate that oestrogen generates positive effects in ovariectomized animal models, a result that is recapitulated in observational studies of postmenopausal women [145]. However, when the Women's Health Initiative (WHI) conducted a large, randomized clinical trial to determine the impact of conjugated equine oestrogens (CEE) alone or in combination with medroxyprogesterone acetate (MPA), an increased incidence of coronary heart disease, stroke and breast cancer was found in women taking CEE plus MPA [146]. In contrast, the 2004 WHI report on the use of CEE alone in women without a uterus shows no significant increase in coronary heart disease or breast cancer, highlighting the negative impact of MPA in combined therapy [147,148]. The WHI data also indicate significant changes in the hazard ratios when age is considered, with the most favourable outcomes in women aged 50–59 years [149]. Nevertheless, the WHI study triggered a black box warning on menopausal hormones and a drastic reduction in the number of women taking these drugs [150].

Unopposed CEE is prescribed only to women with a complete hysterectomy due to the increased risk of endometrial cancer [151]. However, the FDA recently approved the SERM bazedoxifene as a substitute for MPA in combined hormone therapy, which antagonizes the uterine effects of CEE while avoiding the negative effects of MPA [152]. The impact of this new drug combination on long-term health is yet to be determined. Moreover, the interpretation of the WHI results must now be expanded in light of the discovery of GPER. We and others have shown that activation of this receptor induces positive outcomes well past the time of ovariectomy in experimental models [30,56,153]. Importantly, we also find that expression of this membrane oestrogen receptor is maintained in resistance arteries well after the loss of endogenous oestrogens but is reduced during normal aging [18]. Similarly, expression of ERα is reduced in bone marrow-derived macrophages during aging [65]. Alterations in GPER and ER expression may differ according to tissue type and may explain unexpected responses to menopausal hormone therapy. Over a decade after the WHI, the effects of menopausal hormone therapy on health are still unresolved, but recent discoveries in receptor pharmacology will hopefully advance our understanding and treatment of postmenopausal health and disease.

THE FUTURE OF GPER

There are numerous areas where our knowledge of GPER and its function is lacking. In particular, there is little known about the location and signalling of this receptor in normal physiology. The debate on the subcellular location of GPER is ongoing, with various reports showing cell surface [49], intracellular membrane [154] and even nuclear localization [155]. Moreover, receptor location may influence pathologies such as breast cancer, where the receptor resides in the nucleus of MCF7 cells but the cytoplasm of T47D breast cancer cells [156]. The signalling pathways activated by GPER are also varied and opposing. We and others have shown that GPER increases cAMP in vitro [34,157], suggesting coupling of this GPCR to the Gαs subunit. Indeed, recent data from our laboratory show that GPER and Gαs co-localize in female rat vascular smooth muscle cells at both the plasma membrane and perinuclear region (Figure 1). However, others have demonstrated that GPER may couple to Gαi and inhibit cAMP [158] or activate the Gαq signalling cascade [159]. It is important to recognize that there are most likely other hormones that influence GPER signalling, whether through direct binding or receptor-receptor interactions [160]. Identification of these other endogenous ligands or binding partners may help to explain the diversity of GPER location and signalling. Finally, manuscripts that set out to disprove a role for GPER as a membrane oestrogen receptor or minimize its role in comparison with the other ERs are merely obstructing and delaying the knowledge that can be gained by investigating the function of this novel oestrogen-binding site. GPER and the other ERs probably do not work independently but instead are part of a large integrated network of hormone signalling mechanisms that tightly regulate intracellular responses under a variety of physiological and pathological stimuli.

Co-localization of GPER and Gas in vascular smooth muscle cells

Figure 1
Co-localization of GPER and Gas in vascular smooth muscle cells

(A) Vascular smooth muscle cells isolated from mesenteric arteries of female Lewis rats were cultured in charcoal-stripped and Phenol Red-free medium for 48 h. Cells were fixed with 2% paraformaldehyde, blocked with 3% normal donkey serum (NDS), and then incubated overnight at 4°C at a 1:100 dilution of both rabbit anti-GPER (H-300 Santa Cruz sc-134576) and goat anti-GαS (Lifespan LS-C113002) in 3% NDS. Secondary antibodies were added at a 1:200 dilution in 3% NDS (Alexa Fluor 488 Goat Anti-Rabbit; Invitrogen A11008 and Alexa Fluor 647 Donkey Anti-Goat; Invitrogen A21447) before washing and applying mounting medium with DAPI. GPER colocalized with Gαs on both the plasma membrane and the perinuclear region, indicating endoplasmic reticulum localization. (B) Primary antibodies were verified by Western blot and showed a major band corresponding to the appropriate molecular weight of each protein. (C) Proximity ligation assay (Duolink, Sigma–Aldrich) utilized the same primary antibodies but secondary antibodies conjugated to probes that generate a signal only when the proteins are within 40 nm. The appearance of red fluorescent spots signifies the close proximity of GPER and Gαs.

Figure 1
Co-localization of GPER and Gas in vascular smooth muscle cells

(A) Vascular smooth muscle cells isolated from mesenteric arteries of female Lewis rats were cultured in charcoal-stripped and Phenol Red-free medium for 48 h. Cells were fixed with 2% paraformaldehyde, blocked with 3% normal donkey serum (NDS), and then incubated overnight at 4°C at a 1:100 dilution of both rabbit anti-GPER (H-300 Santa Cruz sc-134576) and goat anti-GαS (Lifespan LS-C113002) in 3% NDS. Secondary antibodies were added at a 1:200 dilution in 3% NDS (Alexa Fluor 488 Goat Anti-Rabbit; Invitrogen A11008 and Alexa Fluor 647 Donkey Anti-Goat; Invitrogen A21447) before washing and applying mounting medium with DAPI. GPER colocalized with Gαs on both the plasma membrane and the perinuclear region, indicating endoplasmic reticulum localization. (B) Primary antibodies were verified by Western blot and showed a major band corresponding to the appropriate molecular weight of each protein. (C) Proximity ligation assay (Duolink, Sigma–Aldrich) utilized the same primary antibodies but secondary antibodies conjugated to probes that generate a signal only when the proteins are within 40 nm. The appearance of red fluorescent spots signifies the close proximity of GPER and Gαs.

In terms of human health, we still do not have a clear picture of the role of this receptor in pregnancy, labour or childbirth. In general, this aspect has been overlooked merely because homozygous GPER knockout mice breed normally and uterine physiology is for the most part intact. However, GPER may be an important drug target for infertility, premature labour or other reproductive problems. Another important challenge to be considered in light of GPER is the increasing life span of postmenopausal women. Women now live almost half of their lives after menopause, and whether quality of life could be augmented by selective oestrogen receptor activation is an important area of research. Our laboratory is considering whether activation of GPER provides protection against cardiovascular disease, and others may find benefits in other pathologies as well. Although this review has highlighted mostly female health issues, data from GPER knockout mice provide strong evidence for a role in male health as well. How male sex and sex hormones influence GPER signalling, localization and function is also pertinent to further our knowledge on this receptor.

FUNDING

This work was supported by the National Institutes of Health [grant number HL103974 (to S.H.L.)]; and the American Heart Association [grant numbers POST25515E and GRNT25890021 (to S.H.L.)].

Abbreviations

     
  • BPA

    bisphenol A

  •  
  • cAMP

    cyclic adenosine monophosphate

  •  
  • CEE

    conjugated equine oestrogens

  •  
  • DDT

    dichlorodiphenyltrichloroethane

  •  
  • ER

    oestrogen receptor

  •  
  • G-1

    GPER agonist

  •  
  • GFR

    glomerular filtration rate

  •  
  • GPER

    G protein-coupled oestrogen receptor (formerly GPR30)

  •  
  • MAPK

    mitogen-activated protein kinase

  •  
  • MPA

    medroxyprogesterone acetate

  •  
  • NDS

    normal donkey serum

  •  
  • NOS

    nitric oxide synthase

  •  
  • SERM

    selective oestrogen receptor modulator

  •  
  • WHI

    women's health initiative

References

References
1
Szego
 
C.M.
Davis
 
J.S.
 
Adenosine 3',5'-monophosphate in rat uterus: acute elevation by estrogen
Proc. Natl. Acad. Sci. U.S.A.
1967
, vol. 
58
 (pg. 
1711
-
1718
)
[PubMed]
2
Migliaccio
 
A.
Di Domenico
 
M.
Castoria
 
G.
de Falco
 
A.
Bontempo
 
P.
Nola
 
E.
Auricchio
 
F.
 
Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol receptor complex in MCF-7 cells
EMBO J.
1996
, vol. 
15
 (pg. 
1292
-
1300
)
[PubMed]
3
Lantin-Hermoso
 
R.L.
Rosenfeld
 
C.R.
Yuhanna
 
I.S.
German
 
Z.
Chen
 
Z.
Shaul
 
P.W.
 
Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium
Am. J. Physiol.
1997
, vol. 
273
 (pg. 
L119
-
L126
)
[PubMed]
4
Pietras
 
R.J.
Szego
 
C.M.
 
Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells
Nature
1977
, vol. 
265
 (pg. 
69
-
72
)
[PubMed]
5
Hernandez-Perez
 
O.
Ballesteros
 
L.M.
Rosado
 
A.
 
Binding of 17-beta-estradiol to the outer surface and nucleus of human spermatozoa
Arch. Androl.
1979
, vol. 
3
 (pg. 
23
-
29
)
[PubMed]
6
Russell
 
K.S.
Haynes
 
M.P.
Sinha
 
D.
Clerisme
 
E.
Bender
 
J.R.
 
Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling
Proc. Natl. Acad. Sci. U.S.A.
2000
, vol. 
97
 (pg. 
5930
-
5935
)
[PubMed]
7
Stevis
 
P.E.
Deecher
 
D.C.
Suhadolnik
 
L.
Mallis
 
L.M.
Frail
 
D.E.
 
Differential effects of estradiol and estradiol-BSA conjugates
Endocrinology
1999
, vol. 
140
 (pg. 
5455
-
5458
)
[PubMed]
8
Carmeci
 
C.
Thompson
 
D.A.
Ring
 
H.Z.
Francke
 
U.
Weigel
 
R.J.
 
Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer
Genomics
1997
, vol. 
45
 (pg. 
607
-
617
)
[PubMed]
9
Thomas
 
P.
Pang
 
Y.
Filardo
 
E.J.
Dong
 
J.
 
Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells
Endocrinology
2005
, vol. 
146
 (pg. 
624
-
632
)
[PubMed]
10
Aronica
 
S.M.
Kraus
 
W.L.
Katzenellenbogen
 
B.S.
 
Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription
Proc. Natl. Acad. Sci. U.S.A.
1994
, vol. 
91
 (pg. 
8517
-
8521
)
[PubMed]
11
Improta-Brears
 
T.
Whorton
 
A.R.
Codazzi
 
F.
York
 
J.D.
Meyer
 
T.
McDonnell
 
D.P.
 
Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium
Proc. Natl. Acad. Sci. U.S.A.
1999
, vol. 
96
 (pg. 
4686
-
4691
)
[PubMed]
12
Filardo
 
E.J.
Quinn
 
J.A.
Bland
 
K.I.
Frackelton
 
A.R.
 
Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF
Mol. Endocrinol.
2000
, vol. 
14
 (pg. 
1649
-
1660
)
[PubMed]
13
Filardo
 
E.
Neubig
 
R.
Prossnitz
 
E.
 
2014
 
Estrogen (G protein-coupled) receptor, introduction. IUPHAR/BPS Guide to PHARMACOLOGY2014 [3/24/15]. Available from: http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=22
14
Bologa
 
C.G.
Revankar
 
C.M.
Young
 
S.M.
Edwards
 
B.S.
Arterburn
 
J.B.
Kiselyov
 
A.S.
Parker
 
M.A.
Tkachenko
 
S.E.
Savchuck
 
N.P.
Sklar
 
L.A.
, et al 
Virtual and biomolecular screening converge on a selective agonist for GPR30
Nat. Chem. Biol.
2006
, vol. 
2
 (pg. 
207
-
212
)
[PubMed]
15
Dennis
 
M.K.
Field
 
A.S.
Burai
 
R.
Ramesh
 
C.
Petrie
 
W.K.
Bologa
 
C.G.
Oprea
 
T.I.
Yamaguchi
 
Y.
Hayashi
 
S.
Sklar
 
L.A.
, et al 
Identification of a GPER/GPR30 antagonist with improved estrogen receptor counter selectivity
J. Steroid. Biochem. Mol. Biol.
2011
, vol. 
127
 (pg. 
358
-
366
)
[PubMed]
16
Dennis
 
M.K.
Burai
 
R.
Ramesh
 
C.
Petrie
 
W.K.
Alcon
 
S.N.
Nayak
 
T.K.
Bologa
 
C.G.
Leitao
 
A.
Brailoiu
 
E.
Deliu
 
E.
, et al 
In vivo effects of a GPR30 antagonist
Nat. Chem. Biol.
2009
, vol. 
5
 (pg. 
421
-
427
)
[PubMed]
17
Olde
 
B.
Leeb-Lundberg
 
L.M.
 
GPR30/GPER1: searching for a role in estrogen physiology
Trends Endocrinol. Metab.
2009
, vol. 
20
 (pg. 
409
-
416
)
[PubMed]
18
Lindsey
 
S.H.
da Silva
 
A.S.
Silva
 
M.S.
Chappell
 
M.C.
 
Reduced vasorelaxation to estradiol and G-1 in aged female and adult male rats is associated with GPR30 downregulation
Am. J. Physiol. Endocrinol. Metab.
2013
, vol. 
305
 (pg. 
E113
-
E118
)
[PubMed]
19
Cheng
 
S.B.
Dong
 
J.
Pang
 
Y.
LaRocca
 
J.
Hixon
 
M.
Thomas
 
P.
Filardo
 
E.J.
 
Anatomical location and redistribution of G protein-coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone
Mol. Cell Endocrinol.
2014
, vol. 
382
 (pg. 
950
-
959
)
[PubMed]
20
Jala
 
V.R.
Radde
 
B.N.
Haribabu
 
B.
Klinge
 
C.M.
 
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
BMC Cancer
2012
, vol. 
12
 pg. 
624
 
[PubMed]
21
Plante
 
B.J.
Lessey
 
B.A.
Taylor
 
R.N.
Wang
 
W.
Bagchi
 
M.K.
Yuan
 
L.
Scotchie
 
J.
Fritz
 
M.A.
Young
 
S.L.
 
G protein-coupled estrogen receptor (GPER) expression in normal and abnormal endometrium
Reprod. Sci.
2012
, vol. 
19
 (pg. 
684
-
693
)
[PubMed]
22
Lindsey
 
S.H.
Yamaleyeva
 
L.M.
Brosnihan
 
K.B.
Gallagher
 
P.E.
Chappell
 
M.C.
 
Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat
Hypertension
2011
, vol. 
58
 (pg. 
665
-
671
)
[PubMed]
23
Prossnitz
 
E.R.
Hathaway
 
H.J.
 
What have we learned about GPER function in physiology and disease from knockout mice?
J. Steroid. Biochem. Mol. Biol.
2015
, vol. 
153
 (pg. 
114
-
126
)
[PubMed]
24
Wang
 
Z.
Zhang
 
X.
Shen
 
P.
Loggie
 
B.W.
Chang
 
Y.
Deuel
 
T.F.
 
Identification, cloning, and expression of human estrogen receptor-alpha 36, a novel variant of human estrogen receptor-alpha 66
Biochem. Biophys. Res. Commun.
2005
, vol. 
336
 (pg. 
1023
-
1027
)
[PubMed]
25
Wang
 
Z.
Zhang
 
X.
Shen
 
P.
Loggie
 
B.W.
Chang
 
Y.
Deuel
 
T.F.
 
A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling
Proc. Natl. Acad. Sci. U.S.A.
2006
, vol. 
103
 (pg. 
9063
-
9068
)
[PubMed]
26
Shaul
 
P.W.
 
Rapid activation of endothelial nitric oxide synthase by estrogen
Steroids
1999
, vol. 
64
 (pg. 
28
-
34
)
[PubMed]
27
Mozaffarian
 
D.
Benjamin
 
E.J.
Go
 
A.S.
Arnett
 
D.K.
Blaha
 
M.J.
Cushman
 
M.
de Ferranti
 
S.
Despres
 
J.P.
Fullerton
 
H.J.
Howard
 
V.J.
, et al 
Heart disease and stroke statistics–2015 update: a report from the American Heart Association
Circulation
2015
, vol. 
131
 (pg. 
e29
-
e322
)
[PubMed]
28
Maranon
 
R.
Reckelhoff
 
J.F.
 
Sex and gender differences in control of blood pressure
Clin. Sci. (Lond)
2013
, vol. 
125
 (pg. 
311
-
318
)
[PubMed]
29
Haas
 
E.
Bhattacharya
 
I.
Brailoiu
 
E.
Damjanovic
 
M.
Brailoiu
 
G.C.
Gao
 
X.
Mueller-Guerre
 
L.
Marjon
 
N.A.
Gut
 
A.
Minotti
 
R.
, et al 
Regulatory role of G protein-coupled-estrogen receptor for vascular function and obesity
Circ. Res.
2009
, vol. 
104
 (pg. 
288
-
291
)
[PubMed]
30
Lindsey
 
S.H.
Cohen
 
J.A.
Brosnihan
 
K.B.
Gallagher
 
P.E.
Chappell
 
M.C.
 
Chronic treatment with the G protein-coupled receptor 30 agonist G-1 decreases blood pressure in ovariectomized mRen2.Lewis rats
Endocrinology
2009
, vol. 
150
 (pg. 
3753
-
3758
)
[PubMed]
31
Martensson
 
U.E.
Salehi
 
S.A.
Windahl
 
S.
Gomez
 
M.F.
Sward
 
K.
Daszkiewicz-Nilsson
 
J.
Wendt
 
A.
Andersson
 
N.
Hellstrand
 
P.
Grande
 
P.O.
, et al 
Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice
Endocrinology
2009
, vol. 
150
 (pg. 
687
-
698
)
[PubMed]
32
Feldman
 
R.D.
Gros
 
R.
Ding
 
Q.
Hussain
 
Y.
Ban
 
M.R.
McIntyre
 
A.D.
Hegele
 
R.A.
 
A common hypofunctional genetic variant of GPER is associated with increased blood pressure in women
Br. J. Clin. Pharmacol.
2014
, vol. 
78
 (pg. 
1441
-
1452
)
[PubMed]
33
Lindsey
 
S.H.
Carver
 
K.A.
Prossnitz
 
E.R.
Chappell
 
M.C.
 
Vasodilation in response to the GPR30 agonist G-1 is not different from estradiol in the mRen2.Lewis female rat
J. Cardiovasc. Pharmacol.
2011
, vol. 
57
 (pg. 
598
-
603
)
[PubMed]
34
Lindsey
 
S.H.
Liu
 
L.
Chappell
 
M.C.
 
Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling
Steroids
2014
, vol. 
81
 (pg. 
99
-
102
)
[PubMed]
35
Broughton
 
B.R.
Miller
 
A.A.
Sobey
 
C.G.
 
Endothelium-dependent relaxation by G protein-coupled receptor 30 agonists in rat carotid arteries
Am. J. Physiol. Heart Circ. Physiol.
2010
, vol. 
298
 (pg. 
H1055
-
H1061
)
[PubMed]
36
Gros
 
R.
Ding
 
Q.
Liu
 
B.
Chorazyczewski
 
J.
Feldman
 
R.D.
 
Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation
Am. J. Physiol. Cell Physiol.
2013
, vol. 
304
 (pg. 
C532
-
C540
)
[PubMed]
37
Meyer
 
M.R.
Baretella
 
O.
Prossnitz
 
E.R.
Barton
 
M.
 
Dilation of epicardial coronary arteries by the G protein-coupled estrogen receptor agonists G-1 and ICI 182,780
Pharmacology
2010
, vol. 
86
 (pg. 
58
-
64
)
[PubMed]
38
Yu
 
X.
Ma
 
H.
Barman
 
S.A.
Liu
 
A.T.
Sellers
 
M.
Stallone
 
J.N.
Prossnitz
 
E.R.
White
 
R.E.
Han
 
G.
 
Activation of G protein-coupled estrogen receptor induces endothelium-independent relaxation of coronary artery smooth muscle
Am. J. Physiol. Endocrinol. Metab.
2011
, vol. 
301
 (pg. 
E882
-
E888
)
[PubMed]
39
Reslan
 
O.M.
Yin
 
Z.
do Nascimento
 
G.R.
Khalil
 
R.A.
 
Subtype-specific estrogen receptor-mediated vasodilator activity in the cephalic, thoracic, and abdominal vasculature of female rat
J. Cardiovasc. Pharmacol.
2013
, vol. 
62
 (pg. 
26
-
40
)
[PubMed]
40
Arefin
 
S.
Simoncini
 
T.
Wieland
 
R.
Hammarqvist
 
F.
Spina
 
S.
Goglia
 
L.
Kublickiene
 
K.
 
Vasodilatory effects of the selective GPER agonist G-1 is maximal in arteries of postmenopausal women
Maturitas
2014
, vol. 
78
 (pg. 
123
-
130
)
[PubMed]
41
Meyer
 
M.R.
Prossnitz
 
E.R.
Barton
 
M.
 
The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function
Vascul. Pharmacol.
2011
, vol. 
55
 (pg. 
17
-
25
)
[PubMed]
42
Meyer
 
M.R.
Fredette
 
N.C.
Barton
 
M.
Prossnitz
 
E.R.
 
G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity
J. Endocrinol.
2015
, vol. 
227
 (pg. 
61
-
69
)
[PubMed]
43
Meyer
 
M.R.
Amann
 
K.
Field
 
A.S.
Hu
 
C.
Hathaway
 
H.J.
Kanagy
 
N.L.
Walker
 
M.K.
Barton
 
M.
Prossnitz
 
E.R.
 
Deletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction
Hypertension
2012
, vol. 
59
 (pg. 
507
-
512
)
[PubMed]
44
Meyer
 
M.R.
Field
 
A.S.
Kanagy
 
N.L.
Barton
 
M.
Prossnitz
 
E.R.
 
GPER regulates endothelin-dependent vascular tone and intracellular calcium
Life Sci.
2012
, vol. 
91
 (pg. 
623
-
627
)
[PubMed]
45
Ferreira
 
N.S.
Cau
 
S.B.
Silva
 
M.A.
Manzato
 
C.P.
Mestriner
 
F.L.
Matsumoto
 
T.
Carneiro
 
F.S.
Tostes
 
R.C.
 
Diabetes impairs the vascular effects of aldosterone mediated by G protein-coupled estrogen receptor activation
Front. Pharmacol.
2015
, vol. 
6
 pg. 
34
 
[PubMed]
46
Pechere-Bertschi
 
A.
Burnier
 
M.
 
Female sex hormones, salt, and blood pressure regulation
Am. J. Hypertens.
2004
, vol. 
17
 (pg. 
994
-
1001
)
[PubMed]
47
Hutchens
 
M.P.
Nakano
 
T.
Kosaka
 
Y.
Dunlap
 
J.
Zhang
 
W.
Herson
 
P.S.
Murphy
 
S.J.
Anderson
 
S.
Hurn
 
P.D.
 
Estrogen is renoprotective via a nonreceptor-dependent mechanism after cardiac arrest in vivo
Anesthesiology
2010
, vol. 
112
 (pg. 
395
-
405
)
[PubMed]
48
Hazell
 
G.G.
Yao
 
S.T.
Roper
 
J.A.
Prossnitz
 
E.R.
O'Carroll
 
A.M.
Lolait
 
S.J.
 
Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues
J. Endocrinol.
2009
, vol. 
202
 (pg. 
223
-
236
)
[PubMed]
49
Cheng
 
S.B.
Graeber
 
C.T.
Quinn
 
J.A.
Filardo
 
E.J.
 
Retrograde transport of the transmembrane estrogen receptor, G-protein-coupled-receptor-30 (GPR30/GPER) from the plasma membrane towards the nucleus
Steroids
2011
, vol. 
76
 (pg. 
892
-
896
)
[PubMed]
50
Hutchens
 
M.P.
Fujiyoshi
 
T.
Komers
 
R.
Herson
 
P.S.
Anderson
 
S.
 
Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo
Am. J. Physiol. Renal. Physiol.
2012
, vol. 
303
 (pg. 
F377
-
F385
)
[PubMed]
51
Kurt
 
A.H.
Buyukafsar
 
K.
 
Vasoconstriction induced by G1, a G-protein-coupled oestrogen receptor 1 (GPER-1) agonist, in the isolated perfused rat kidney
Eur. J. Pharmacol.
2013
, vol. 
702
 (pg. 
71
-
78
)
[PubMed]
52
Adams
 
M.R.
Kaplan
 
J.R.
Manuck
 
S.B.
Koritnik
 
D.R.
Parks
 
J.S.
Wolfe
 
M.S.
Clarkson
 
T.B.
 
Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys. Lack of an effect of added progesterone
Arteriosclerosis
1990
, vol. 
10
 (pg. 
1051
-
1057
)
[PubMed]
53
Kaplan
 
J.R.
Adams
 
M.R.
Anthony
 
M.S.
Morgan
 
T.M.
Manuck
 
S.B.
Clarkson
 
T.B.
 
Dominant social status and contraceptive hormone treatment inhibit atherogenesis in premenopausal monkeys
Arterioscler. Thromb. Vasc. Biol.
1995
, vol. 
15
 (pg. 
2094
-
2100
)
[PubMed]
54
Hodgin
 
J.B.
Krege
 
J.H.
Reddick
 
R.L.
Korach
 
K.S.
Smithies
 
O.
Maeda
 
N.
 
Estrogen receptor alpha is a major mediator of 17beta-estradiol's atheroprotective effects on lesion size in Apoe-/- mice
J. Clin. Invest.
2001
, vol. 
107
 (pg. 
333
-
340
)
[PubMed]
55
Villablanca
 
A.C.
Tenwolde
 
A.
Lee
 
M.
Huck
 
M.
Mumenthaler
 
S.
Rutledge
 
J.C.
 
17beta-estradiol prevents early-stage atherosclerosis in estrogen receptor-alpha deficient female mice
J. Cardiovasc. Transl. Res.
2009
, vol. 
2
 (pg. 
289
-
299
)
[PubMed]
56
Meyer
 
M.R.
Fredette
 
N.C.
Howard
 
T.A.
Hu
 
C.
Ramesh
 
C.
Daniel
 
C.
Amann
 
K.
Arterburn
 
J.B.
Barton
 
M.
Prossnitz
 
E.R.
 
G protein-coupled estrogen receptor protects from atherosclerosis
Sci. Rep.
2014
, vol. 
4
 pg. 
7564
 
[PubMed]
57
Yamaji
 
K.
Shiomi
 
H.
Morimoto
 
T.
Toyota
 
T.
Ono
 
K.
Furukawa
 
Y.
Nakagawa
 
Y.
Kadota
 
K.
Ando
 
K.
Shirai
 
S.
, et al 
Influence of sex on long-term outcomes after implantation of bare-metal stent: a multicenter report from the Coronary Revascularization Demonstrating Outcome Study-Kyoto (CREDO-Kyoto) Registry Cohort-1
Circulation
2015
, vol. 
132
 (pg. 
2323
-
2333
)
[PubMed]
58
Chen
 
S.J.
Li
 
H.
Durand
 
J.
Oparil
 
S.
Chen
 
Y.F.
 
Estrogen reduces myointimal proliferation after balloon injury of rat carotid artery
Circulation
1996
, vol. 
93
 (pg. 
577
-
584
)
[PubMed]
59
Chandrasekar
 
B.
Tanguay
 
J.F.
 
Local delivery of 17-beta-estradiol decreases neointimal hyperplasia after coronary angioplasty in a porcine model
J. Am. Coll. Cardiol.
2000
, vol. 
36
 (pg. 
1972
-
1978
)
[PubMed]
60
Geraldes
 
P.
Geoffroy
 
P.
Cloutier
 
I.
Sirois
 
M.G.
Tanguay
 
J.F.
 
Local delivery of 17-beta-estradiol modulates collagen content in coronary porcine arteries after PTCA and stent implantation
J. Vasc. Res.
2008
, vol. 
45
 (pg. 
503
-
511
)
[PubMed]
61
Han
 
Y.
Liang
 
M.
Kang
 
J.
Qi
 
Y.
Deng
 
J.
Xu
 
K.
Yan
 
C.
 
Estrogen-eluting stent implantation inhibits neointimal formation and extracellular signal-regulated kinase activation
Catheter. Cardiovasc. Interv.
2007
, vol. 
70
 (pg. 
647
-
653
)
[PubMed]
62
New
 
G.
Moses
 
J.W.
Roubin
 
G.S.
Leon
 
M.B.
Colombo
 
A.
Iyer
 
S.S.
Tio
 
F.O.
Mehran
 
R.
Kipshidze
 
N.
 
Estrogen-eluting, phosphorylcholine-coated stent implantation is associated with reduced neointimal formation but no delay in vascular repair in aporcine coronary model
Catheter. Cardiovasc. Interv.
2002
, vol. 
57
 (pg. 
266
-
271
)
[PubMed]
63
Iafrati
 
M.D.
Karas
 
R.H.
Aronovitz
 
M.
Kim
 
S.
Sullivan
 
T.R.
Lubahn
 
D.B.
O'Donnell
 
T.F.
Korach
 
K.S.
Mendelsohn
 
M.E.
 
Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice
Nat. Med.
1997
, vol. 
3
 (pg. 
545
-
548
)
[PubMed]
64
Li
 
F.
Yu
 
X.
Szynkarski
 
C.K.
Meng
 
C.
Zhou
 
B.
Barhoumi
 
R.
White
 
R.E.
Heaps
 
C.L.
Stallone
 
J.N.
Han
 
G.
 
Activation of GPER induces differentiation and inhibition of coronary artery smooth muscle cell proliferation
PLoS One
2013
, vol. 
8
 pg. 
e64771
 
[PubMed]
65
Bowling
 
M.R.
Xing
 
D.
Kapadia
 
A.
Chen
 
Y.F.
Szalai
 
A.J.
Oparil
 
S.
Hage
 
F.G.
 
Estrogen effects on vascular inflammation are age dependent: role of estrogen receptors
Arterioscler. Thromb. Vasc. Biol.
2014
, vol. 
34
 (pg. 
1477
-
1485
)
[PubMed]
66
Rettew
 
J.A.
McCall
 
S.H.t.
Marriott
 
I.
 
GPR30/GPER-1 mediates rapid decreases inTLR4 expression on murine macrophages
Mol. Cell Endocrinol.
2010
, vol. 
328
 (pg. 
87
-
92
)
[PubMed]
67
Chakrabarti
 
S.
Davidge
 
S.T.
 
G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation
PLoS One
2012
, vol. 
7
 pg. 
e52357
 
[PubMed]
68
Scantlebury
 
D.C.
Borlaug
 
B.A.
 
Why are women more likely than men to develop heart failure with preserved ejection fraction?
Curr. Opin. Cardiol.
2011
, vol. 
26
 (pg. 
562
-
568
)
[PubMed]
69
Douglas
 
P.S.
Katz
 
S.E.
Weinberg
 
E.O.
Chen
 
M.H.
Bishop
 
S.P.
Lorell
 
B.H.
 
Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload
J. Am. Coll. Cardiol.
1998
, vol. 
32
 (pg. 
1118
-
1125
)
[PubMed]
70
Gardner
 
J.D.
Brower
 
G.L.
Janicki
 
J.S.
 
Gender differences in cardiac remodeling secondary to chronic volume overload
J. Card. Fail.
2002
, vol. 
8
 (pg. 
101
-
107
)
[PubMed]
71
Voloshenyuk
 
T.G.
Gardner
 
J.D.
 
Estrogen improves TIMP-MMP balance and collagen distribution in volume-overloaded hearts of ovariectomized females
Am. J. Physiol. Regul. Integr. Comp. Physiol.
2010
, vol. 
299
 (pg. 
R683
-
R693
)
[PubMed]
72
Skavdahl
 
M.
Steenbergen
 
C.
Clark
 
J.
Myers
 
P.
Demianenko
 
T.
Mao
 
L.
Rockman
 
H.A.
Korach
 
K.S.
Murphy
 
E.
 
Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy
Am. J. Physiol. Heart Circ. Physiol.
2005
, vol. 
288
 (pg. 
H469
-
H476
)
[PubMed]
73
Zhao
 
Z.
Wang
 
H.
Jessup
 
J.A.
Lindsey
 
S.H.
Chappell
 
M.C.
Groban
 
L.
 
Role of estrogen in diastolic dysfunction
Am. J. Physiol. Heart Circ. Physiol.
2014
, vol. 
306
 (pg. 
H628
-
H640
)
[PubMed]
74
Wang
 
H.
Jessup
 
J.A.
Lin
 
M.S.
Chagas
 
C.
Lindsey
 
S.H.
Groban
 
L.
 
Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats
Cardiovasc. Res.
2012
, vol. 
94
 (pg. 
96
-
104
)
[PubMed]
75
Wang
 
H.
Zhao
 
Z.
Lin
 
M.
Groban
 
L.
 
Activation of GPR30 inhibits cardiac fibroblast proliferation
Mol. Cell Biochem.
2015
, vol. 
405
 (pg. 
135
-
148
)
[PubMed]
76
Jessup
 
J.A.
Lindsey
 
S.H.
Wang
 
H.
Chappell
 
M.C.
Groban
 
L.
 
Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats
PLoS One
2010
, vol. 
5
 pg. 
e15433
 
[PubMed]
77
Bopassa
 
J.C.
Eghbali
 
M.
Toro
 
L.
Stefani
 
E.
 
A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury
Am. J. Physiol. Heart Circ. Physiol.
2010
, vol. 
298
 (pg. 
H16
-
H23
)
[PubMed]
78
Deschamps
 
A.M.
Murphy
 
E.
 
Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats
Am. J. Physiol. Heart Circ. Physiol.
2009
, vol. 
297
 (pg. 
H1806
-
H1813
)
[PubMed]
79
Meoli
 
L.
Isensee
 
J.
Zazzu
 
V.
Nabzdyk
 
C.S.
Soewarto
 
D.
Witt
 
H.
Foryst-Ludwig
 
A.
Kintscher
 
U.
Noppinger
 
P.R.
 
Sex- and age-dependent effects of Gpr30 genetic deletion on the metabolic and cardiovascular profiles of diet-induced obese mice
Gene
2014
, vol. 
540
 (pg. 
210
-
216
)
[PubMed]
80
Brailoiu
 
G.C.
Arterburn
 
J.B.
Oprea
 
T.I.
Chitravanshi
 
V.C.
Brailoiu
 
E.
 
Bradycardic effects mediated by activation of G protein-coupled estrogen receptor in rat nucleus ambiguus
Exp. Physiol.
2013
, vol. 
98
 (pg. 
679
-
691
)
[PubMed]
81
Zhao
 
Z.
Wang
 
H.
Lin
 
M.
Groban
 
L.
 
GPR30 decreases cardiacchymase/angiotensin II by inhibiting local mast cell number
Biochem. Biophys. Res. Commun.
2015
, vol. 
459
 (pg. 
131
-
136
)
[PubMed]
82
Kang
 
S.
Liu
 
Y.
Sun
 
D.
Zhou
 
C.
Liu
 
A.
Xu
 
C.
Hao
 
Y.
Li
 
D.
Yan
 
C.
Sun
 
H.
 
Chronic activation of the G protein-coupled receptor 30 with agonist G-1 attenuates heart failure
PLoS One
2012
, vol. 
7
 pg. 
e48185
 
[PubMed]
83
Otto
 
C.
Fuchs
 
I.
Kauselmann
 
G.
Kern
 
H.
Zevnik
 
B.
Andreasen
 
P.
Schwarz
 
G.
Altmann
 
H.
Klewer
 
M.
Schoor
 
M.
, et al 
GPR30 does not mediate estrogenic responses in reproductive organs in mice
Biol. Reprod.
2009
, vol. 
80
 (pg. 
34
-
41
)
[PubMed]
84
Isensee
 
J.
Meoli
 
L.
Zazzu
 
V.
Nabzdyk
 
C.
Witt
 
H.
Soewarto
 
D.
Effertz
 
K.
Fuchs
 
H.
Gailus-Durner
 
V.
Busch
 
D.
, et al 
Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice
Endocrinology
2009
, vol. 
150
 (pg. 
1722
-
1730
)
[PubMed]
85
Naugle
 
M.M.
Nguyen
 
L.T.
Merceron
 
T.K.
Filardo
 
E.
Janssen
 
W.G.
Morrison
 
J.H.
Rapp
 
P.R.
Gore
 
A.C.
 
G-protein coupled estrogen receptor, estrogen receptor alpha, and progesterone receptor immunohistochemistry in the hypothalamus of aging female rhesus macaques given long-term estradiol treatment
J. Exp. Zool. A Ecol. Genet. Physiol.
2014
, vol. 
321
 (pg. 
399
-
414
)
[PubMed]
86
Kolkova
 
Z.
Noskova
 
V.
Ehinger
 
A.
Hansson
 
S.
Casslen
 
B.
 
G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua
Mol. Hum. Reprod.
2010
, vol. 
16
 (pg. 
743
-
751
)
[PubMed]
87
Tian
 
R.
Wang
 
Z.
Shi
 
Z.
Li
 
D.
Wang
 
Y.
Zhu
 
Y.
Lin
 
W.
Gui
 
Y.
Zheng
 
X.L.
 
Differential expression of G-protein-coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle
Fertil. Steril.
2013
, vol. 
99
 (pg. 
256
-
263
)
[PubMed]
88
Windahl
 
S.H.
Andersson
 
N.
Chagin
 
A.S.
Martensson
 
U.E.
Carlsten
 
H.
Olde
 
B.
Swanson
 
C.
Moverare-Skrtic
 
S.
Savendahl
 
L.
Lagerquist
 
M.K.
, et al 
The role of theG protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice
Am. J. Physiol. Endocrinol. Metab.
2009
, vol. 
296
 (pg. 
E490
-
E496
)
[PubMed]
89
Gao
 
F.
Ma
 
X.
Ostmann
 
A.B.
Das
 
S.K.
 
GPR30 activation opposes estrogen dependent uterine growth via inhibition of stromal ERK1/2 and estrogen receptor alpha (ERalpha) phosphorylation signals
Endocrinology
2011
, vol. 
152
 (pg. 
1434
-
1447
)
[PubMed]
90
Imesch
 
P.
Samartzis
 
E.P.
Dedes
 
K.J.
Fink
 
D.
Fedier
 
A.
 
Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER antagonist G-15 inhibits proliferation in endometriotic cells
Fertil. Steril.
2013
, vol. 
100
 (pg. 
770
-
776
)
[PubMed]
91
Tica
 
A.A.
Dun
 
E.C.
Tica
 
O.S.
Gao
 
X.
Arterburn
 
J.B.
Brailoiu
 
G.C.
Oprea
 
T.I.
Brailoiu
 
E.
 
G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium
Am. J. Physiol. Cell Physiol.
2011
, vol. 
301
 (pg. 
C1262
-
C1269
)
[PubMed]
92
Corcoran
 
J.J.
Nicholson
 
C.
Sweeney
 
M.
Charnock
 
J.C.
Robson
 
S.C.
Westwood
 
M.
Taggart
 
M.J.
 
Human uterine and placental arteries exhibit tissue-specific acute responses to 17beta-estradiol and estrogen-receptor-specific agonists
Mol. Hum. Reprod.
2014
, vol. 
20
 (pg. 
433
-
441
)
[PubMed]
93
Maiti
 
K.
Paul
 
J.W.
Read
 
M.
Chan
 
E.C.
Riley
 
S.C.
Nahar
 
P.
Smith
 
R.
 
G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium
Endocrinology
2011
, vol. 
152
 (pg. 
2448
-
2455
)
[PubMed]
94
Martinez-Traverso
 
G.B.
Pearl
 
C.A.
 
Immunolocalization of G protein-coupled estrogen receptor in the rat epididymis
Reprod. Biol. Endocrinol.
2015
, vol. 
13
 pg. 
48
 
[PubMed]
95
Oliveira
 
P.F.
Alves
 
M.G.
Martins
 
A.D.
Correia
 
S.
Bernardino
 
R.L.
Silva
 
J.
Barros
 
A.
Sousa
 
M.
Cavaco
 
J.E.
Socorro
 
S.
 
Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells
Gen. Comp. Endocrinol.
2014
, vol. 
201
 (pg. 
16
-
20
)
[PubMed]
96
Sandner
 
F.
Welter
 
H.
Schwarzer
 
J.U.
Kohn
 
F.M.
Urbanski
 
H.F.
Mayerhofer
 
A.
 
Expression of the oestrogen receptor GPER by testicular peritubular cells is linked to sexual maturation and male fertility
Andrology
2014
, vol. 
2
 (pg. 
695
-
701
)
[PubMed]
97
Vaucher
 
L.
Funaro
 
M.G.
Mehta
 
A.
Mielnik
 
A.
Bolyakov
 
A.
Prossnitz
 
E.R.
Schlegel
 
P.N.
Paduch
 
D.A.
 
Activation of GPER-1 estradiol receptor downregulates production of testosterone in isolated rat Leydig cells and adult human testis
PLoS One
2014
, vol. 
9
 pg. 
e92425
 
[PubMed]
98
Meyer
 
M.R.
Clegg
 
D.J.
Prossnitz
 
E.R.
Barton
 
M.
 
Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors
Acta Physiol. (Oxf)
2011
, vol. 
203
 (pg. 
259
-
269
)
[PubMed]
99
Ferrara
 
C.M.
Lynch
 
N.A.
Nicklas
 
B.J.
Ryan
 
A.S.
Berman
 
D.M.
 
Differences in adipose tissue metabolism between postmenopausal and perimenopausal women
J. Clin. Endocrinol. Metab.
2002
, vol. 
87
 (pg. 
4166
-
4170
)
[PubMed]
100
Stubbins
 
R.E.
Najjar
 
K.
Holcomb
 
V.B.
Hong
 
J.
Nunez
 
N.P.
 
Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance
Diabetes Obes. Metab.
2012
, vol. 
14
 (pg. 
58
-
66
)
[PubMed]
101
Tiano
 
J.P.
Mauvais-Jarvis
 
F.
 
Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes
Nat. Rev. Endocrinol.
2012
, vol. 
8
 (pg. 
342
-
351
)
[PubMed]
102
Liu
 
S.
Le May
 
C.
Wong
 
W.P.
Ward
 
R.D.
Clegg
 
D.J.
Marcelli
 
M.
Korach
 
K.S.
Mauvais-Jarvis
 
F.
 
Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival
Diabetes
2009
, vol. 
58
 (pg. 
2292
-
2302
)
[PubMed]
103
Davis
 
K.E.
Carstens
 
E.J.
Irani
 
B.G.
Gent
 
L.M.
Hahner
 
L.M.
Clegg
 
D.J.
 
Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis
Horm. Behav.
2014
, vol. 
66
 (pg. 
196
-
207
)
[PubMed]
104
Ropero
 
A.B.
Pang
 
Y.
Alonso-Magdalena
 
P.
Thomas
 
P.
Nadal
 
A.
 
Role of ERbeta and GPR30 in the endocrine pancreas: a matter of estrogen dose
Steroids
2012
, vol. 
77
 (pg. 
951
-
958
)
[PubMed]
105
Barton
 
M.
Prossnitz
 
E.R.
 
Emerging roles of GPER in diabetes and atherosclerosis
Trends Endocrinol. Metab.
2015
, vol. 
26
 (pg. 
185
-
192
)
[PubMed]
106
Sharma
 
G.
Hu
 
C.
Brigman
 
J.L.
Zhu
 
G.
Hathaway
 
H.J.
Prossnitz
 
E.R.
 
GPER deficiency in male mice results in insulin resistance, dyslipidemia, and aproinflammatory state
Endocrinology
2013
, vol. 
154
 (pg. 
4136
-
4145
)
[PubMed]
107
Balhuizen
 
A.
Kumar
 
R.
Amisten
 
S.
Lundquist
 
I.
Salehi
 
A.
 
Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice
Mol. Cell Endocrinol.
2010
, vol. 
320
 (pg. 
16
-
24
)
[PubMed]
108
Sharma
 
G.
Prossnitz
 
E.R.
 
Mechanisms of estradiol-induced insulin secretion by theG protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells
Endocrinology
2011
, vol. 
152
 (pg. 
3030
-
3039
)
[PubMed]
109
Shapiro
 
A.M.
 
Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome
Rev. Diabet. Stud.
2012
, vol. 
9
 (pg. 
385
-
406
)
[PubMed]
110
Liu
 
S.
Kilic
 
G.
Meyers
 
M.S.
Navarro
 
G.
Wang
 
Y.
Oberholzer
 
J.
Mauvais-Jarvis
 
F.
 
Oestrogens improve human pancreatic islet transplantation in a mouse model of insulin deficient diabetes
Diabetologia
2013
, vol. 
56
 (pg. 
370
-
381
)
[PubMed]
111
Albanito
 
L.
Madeo
 
A.
Lappano
 
R.
Vivacqua
 
A.
Rago
 
V.
Carpino
 
A.
Oprea
 
T.I.
Prossnitz
 
E.R.
Musti
 
A.M.
Ando
 
S.
, et al 
G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells
Cancer Res.
2007
, vol. 
67
 (pg. 
1859
-
1866
)
[PubMed]
112
Wei
 
W.
Chen
 
Z.J.
Zhang
 
K.S.
Yang
 
X.L.
Wu
 
Y.M.
Chen
 
X.H.
Huang
 
H.B.
Liu
 
H.L.
Cai
 
S.H.
Du
 
J.
, et al 
The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo
Cell Death Dis.
2014
, vol. 
5
 pg. 
e1428
 
[PubMed]
113
Ariazi
 
E.A.
Brailoiu
 
E.
Yerrum
 
S.
Shupp
 
H.A.
Slifker
 
M.J.
Cunliffe
 
H.E.
Black
 
M.A.
Donato
 
A.L.
Arterburn
 
J.B.
Oprea
 
T.I.
, et al 
The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells
Cancer Res.
2010
, vol. 
70
 (pg. 
1184
-
1194
)
[PubMed]
114
Chan
 
Q.K.
Lam
 
H.M.
Ng
 
C.F.
Lee
 
A.Y.
Chan
 
E.S.
Ng
 
H.K.
Ho
 
S.M.
Lau
 
K.M.
 
Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell cycle arrest
Cell Death Differ.
2010
, vol. 
17
 (pg. 
1511
-
1523
)
[PubMed]
115
Zhang
 
Z.
Duan
 
L.
Du
 
X.
Ma
 
H.
Park
 
I.
Lee
 
C.
Zhang
 
J.
Shi
 
J.
 
The proliferative effect of estradiol on human prostate stromal cells is mediated through activation of ERK
Prostate
2008
, vol. 
68
 (pg. 
508
-
516
)
[PubMed]
116
Vivacqua
 
A.
De Marco
 
P.
Santolla
 
M.F.
Cirillo
 
F.
Pellegrino
 
M.
Panno
 
M.L.
Abonante
 
S.
Maggiolini
 
M.
 
Estrogenic gper signaling regulates mir144 expression in cancer cells and cancer-associated fibroblasts (cafs)
Oncotarget
2015
, vol. 
6
 (pg. 
16573
-
16587
)
[PubMed]
117
Recchia
 
A.G.
De Francesco
 
E.M.
Vivacqua
 
A.
Sisci
 
D.
Panno
 
M.L.
Ando
 
S.
Maggiolini
 
M.
 
The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible-factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes
J. Biol. Chem.
2011
, vol. 
286
 (pg. 
10773
-
10782
)
[PubMed]
118
Lappano
 
R.
Rigiracciolo
 
D.
De Marco
 
P.
Avino
 
S.
Cappello
 
A.R.
Rosano
 
C.
Maggiolini
 
M.
De Francesco
 
E.M.
 
Recent advances on the role of G protein-coupled receptors in hypoxia-mediated signaling
AAPS J.
2016
, vol. 
18
 (pg. 
305
-
310
)
[PubMed]
119
Holm
 
A.
Grande
 
P.O.
Luduena
 
R.F.
Olde
 
B.
Prasad
 
V.
Leeb-Lundberg
 
L.M.
Nilsson
 
B.O.
 
The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner
Mol. Cell Biochem.
2012
, vol. 
366
 (pg. 
239
-
249
)
[PubMed]
120
Rigiracciolo
 
D.C.
Scarpelli
 
A.
Lappano
 
R.
Pisano
 
A.
Santolla
 
M.F.
De Marco
 
P.
Cirillo
 
F.
Cappello
 
A.R.
Dolce
 
V.
Belfiore
 
A.
, et al 
Copper activates HIF-1alpha/GPER/VEGF signalling in cancer cells
Oncotarget
2015
, vol. 
6
 (pg. 
34158
-
34177
)
[PubMed]
121
Lappano
 
R.
Pisano
 
A.
Maggiolini
 
M.
 
GPER function in breast cancer: an overview
Front. Endocrinol. (Lausanne)
2014
, vol. 
5
 pg. 
66
 
[PubMed]
122
Arias-Pulido
 
H.
Royce
 
M.
Gong
 
Y.
Joste
 
N.
Lomo
 
L.
Lee
 
S.J.
Chaher
 
N.
Verschraegen
 
C.
Lara
 
J.
Prossnitz
 
E.R.
, et al 
GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer
Breast Cancer Res. Treat.
2010
, vol. 
123
 (pg. 
51
-
58
)
[PubMed]
123
Ignatov
 
T.
Weissenborn
 
C.
Poehlmann
 
A.
Lemke
 
A.
Semczuk
 
A.
Roessner
 
A.
Costa
 
S.D.
Kalinski
 
T.
Ignatov
 
A.
 
GPER-1 expression decreases during breast cancer tumorigenesis
Cancer Invest.
2013
, vol. 
31
 (pg. 
309
-
315
)
[PubMed]
124
Lumachi
 
F.
Santeufemia
 
D.A.
Basso
 
S.M.
 
Current medical treatment of estrogen receptor-positive breast cancer
World J. Biol. Chem.
2015
, vol. 
6
 (pg. 
231
-
239
)
[PubMed]
125
Viedma-Rodriguez
 
R.
Baiza-Gutman
 
L.
Salamanca-Gomez
 
F.
Diaz-Zaragoza
 
M.
Martinez-Hernandez
 
G.
Ruiz Esparza-Garrido
 
R.
Velazquez-Flores
 
M.A.
Arenas-Aranda
 
D.
 
Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review)
Oncol. Rep.
2014
, vol. 
32
 (pg. 
3
-
15
)
[PubMed]
126
Ignatov
 
A.
Ignatov
 
T.
Roessner
 
A.
Costa
 
S.D.
Kalinski
 
T.
 
Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells
Breast Cancer Res. Treat.
2010
, vol. 
123
 (pg. 
87
-
96
)
[PubMed]
127
Catalano
 
S.
Giordano
 
C.
Panza
 
S.
Chemi
 
F.
Bonofiglio
 
D.
Lanzino
 
M.
Rizza
 
P.
Romeo
 
F.
Fuqua
 
S.A.
Maggiolini
 
M.
, et al 
Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth
Breast Cancer Res. Treat.
2014
, vol. 
146
 (pg. 
273
-
285
)
[PubMed]
128
Nass
 
N.
Kalinski
 
T.
 
Tamoxifen resistance: from cell culture experiments towards novel biomarkers
Pathol. Res. Pract.
2015
, vol. 
211
 (pg. 
189
-
197
)
[PubMed]
129
Thomas
 
P.
Dong
 
J.
 
Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption
J. Steroid. Biochem. Mol. Biol.
2006
, vol. 
102
 (pg. 
175
-
179
)
[PubMed]
130
Prossnitz
 
E.R.
Barton
 
M.
 
Estrogen biology: new insights into GPER function and clinical opportunities
Mol. Cell Endocrinol.
2014
, vol. 
389
 (pg. 
71
-
83
)
[PubMed]
131
Vandenberg
 
L.N.
Chahoud
 
I.
Heindel
 
J.J.
Padmanabhan
 
V.
Paumgartten
 
F.J.
Schoenfelder
 
G.
 
Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A
Environ. Health Perspect.
2010
, vol. 
118
 (pg. 
1055
-
1070
)
[PubMed]
132
Ge
 
L.C.
Chen
 
Z.J.
Liu
 
H.Y.
Zhang
 
K.S.
Liu
 
H.
Huang
 
H.B.
Zhang
 
G.
Wong
 
C.K.
Giesy
 
J.P.
Du
 
J.
, et al 
Involvement of activating ERK1/2 through G protein coupled-receptor 30 and estrogen receptor alpha/beta in low doses of bisphenol A promoting growth of Sertoli TM4 cells
Toxicol. Lett.
2014
, vol. 
226
 (pg. 
81
-
89
)
[PubMed]
133
Sheng
 
Z.G.
Huang
 
W.
Liu
 
Y.X.
Zhu
 
B.Z.
 
Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression
Toxicol. Appl. Pharmacol.
2013
, vol. 
267
 (pg. 
88
-
94
)
[PubMed]
134
Sheng
 
Z.G.
Zhu
 
B.Z.
 
Low concentrations of bisphenol A induce mouse spermatogonial cell proliferation by G protein-coupled receptor 30 and estrogen receptor-alpha
Environ. Health Perspect.
2011
, vol. 
119
 (pg. 
1775
-
1780
)
[PubMed]
135
Kajta
 
M.
Litwa
 
E.
Rzemieniec
 
J.
Wnuk
 
A.
Lason
 
W.
Zelek-Molik
 
A.
Nalepa
 
I.
Grzegorzewska-Hiczwa
 
M.
Tokarski
 
K.
Golas
 
A.
, et al 
Isomer-nonspecific action of dichlorodiphenyl trichloroethane on aryl hydrocarbon receptor and G-protein coupled-receptor 30 intracellular signaling in apoptotic neuronal cells
Mol. Cell Endocrinol.
2014
, vol. 
392
 (pg. 
90
-
105
)
[PubMed]
136
Schmidt
 
S.
Degen
 
G.H.
Seibel
 
J.
Hertrampf
 
T.
Vollmer
 
G.
Diel
 
P.
 
Hormonal activityof combinations of genistein, bisphenol A and 17beta-estradiol in the female Wistar rat
Arch. Toxicol.
2006
, vol. 
80
 (pg. 
839
-
845
)
[PubMed]
137
Luo
 
L.J.
Liu
 
F.
Lin
 
Z.K.
Xie
 
Y.F.
Xu
 
J.L.
Tong
 
Q.C.
Shu
 
R.
 
Genistein regulates the IL-1beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30
Arch. Biochem. Biophys.
2012
, vol. 
522
 (pg. 
9
-
16
)
[PubMed]
138
Albanito
 
L.
Lappano
 
R.
Madeo
 
A.
Chimento
 
A.
Prossnitz
 
E.R.
Cappello
 
A.R.
Dolce
 
V.
Abonante
 
S.
Pezzi
 
V.
Maggiolini
 
M.
 
Effects of atrazine on estrogen receptor alpha- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts
Environ. Health Perspect.
2015
, vol. 
123
 (pg. 
493
-
499
)
[PubMed]
139
Yu
 
X.
Filardo
 
E.J.
Shaikh
 
Z.A.
 
The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells
Toxicol. Appl. Pharmacol.
2010
, vol. 
245
 (pg. 
83
-
90
)
[PubMed]
140
Zhang
 
K.S.
Chen
 
H.Q.
Chen
 
Y.S.
Qiu
 
K.F.
Zheng
 
X.B.
Li
 
G.C.
Yang
 
H.D.
Wen
 
C.J.
 
Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway
Biomed. Pharmacother.
2014
, vol. 
68
 (pg. 
1037
-
1043
)
[PubMed]
141
Petrie
 
W.K.
Dennis
 
M.K.
Hu
 
C.
Dai
 
D.
Arterburn
 
J.B.
Smith
 
H.O.
Hathaway
 
H.J.
Prossnitz
 
E.R.
 
G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth
Obstet. Gynecol. Int.
2013
, vol. 
2013
 pg. 
472720
 
[PubMed]
142
Ma
 
H.R.
Wang
 
J.
Chen
 
Y.F.
Chen
 
H.
Wang
 
W.S.
Aisa
 
H.A.
 
Icariin and icaritin stimulate the proliferation of SKBr3 cells through the GPER1-mediated modulation of the EGFR-MAPK signaling pathway
Int. J. Mol. Med.
2014
, vol. 
33
 (pg. 
1627
-
1634
)
[PubMed]
143
Gao
 
Q.
Liu
 
S.
Guo
 
F.
Liu
 
S.
Yu
 
X.
Hu
 
H.
Sun
 
X.
Hao
 
L.
Zhu
 
T.
 
Nonylphenol affects myocardial contractility and L-type Ca(2+) channel currents in a non-monotonic manner via G protein-coupled receptor 30
Toxicology
2015
, vol. 
334
 (pg. 
122
-
129
)
[PubMed]
144
Belcher
 
S.M.
Gear
 
R.B.
Kendig
 
E.L.
 
Bisphenol A alters autonomic tone and extracellular matrix structure and induces sex-specific effects on cardiovascular function in male and female CD-1 mice
Endocrinology
2015
, vol. 
156
 (pg. 
882
-
895
)
[PubMed]
145
Contreras
 
I.
Parra
 
D.
 
Estrogen replacement therapy and the prevention of coronary heart disease in postmenopausal women
Am. J. Health Syst. Pharm.
2000
, vol. 
57
 (pg. 
1963
-
1968
)
[PubMed]
146
Rossouw
 
J.E.
Anderson
 
G.L.
Prentice
 
R.L.
LaCroix
 
A.Z.
Kooperberg
 
C.
Stefanick
 
M.L.
Jackson
 
R.D.
Beresford
 
S.A.
Howard
 
B.V.
Johnson
 
K.C.
, et al 
Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial
JAMA
2002
, vol. 
288
 (pg. 
321
-
333
)
[PubMed]
147
Anderson
 
G.L.
Limacher
 
M.
Assaf
 
A.R.
Bassford
 
T.
Beresford
 
S.A.
Black
 
H.
Bonds
 
D.
Brunner
 
R.
Brzyski
 
R.
Caan
 
B.
, et al 
Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial
JAMA
2004
, vol. 
291
 (pg. 
1701
-
1712
)
[PubMed]
148
Hulley
 
S.B.
Grady
 
D.
 
The WHI estrogen-alone trial—do things look any better?
JAMA
2004
, vol. 
291
 (pg. 
1769
-
1771
)
[PubMed]
149
Rossouw
 
J.E.
Prentice
 
R.L.
Manson
 
J.E.
Wu
 
L.
Barad
 
D.
Barnabei
 
V.M.
Ko
 
M.
LaCroix
 
A.Z.
Margolis
 
K.L.
Stefanick
 
M.L.
 
Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause
JAMA
2007
, vol. 
297
 (pg. 
1465
-
1477
)
[PubMed]
150
Hersh
 
A.L.
Stefanick
 
M.L.
Stafford
 
R.S.
 
National use of postmenopausal hormone therapy: annual trends and response to recent evidence
JAMA
2004
, vol. 
291
 (pg. 
47
-
53
)
[PubMed]
151
Grady
 
D.
Gebretsadik
 
T.
Kerlikowske
 
K.
Ernster
 
V.
Petitti
 
D.
 
Hormone replacement therapy and endometrial cancer risk: a meta-analysis
Obstet. Gynecol.
1995
, vol. 
85
 (pg. 
304
-
313
)
[PubMed]
152
Kharode
 
Y.
Bodine
 
P.V.
Miller
 
C.P.
Lyttle
 
C.R.
Komm
 
B.S.
 
The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention
Endocrinology
2008
, vol. 
149
 (pg. 
6084
-
6091
)
[PubMed]
153
Broughton
 
B.R.
Brait
 
V.H.
Kim
 
H.A.
Lee
 
S.
Chu
 
H.X.
Gardiner-Mann
 
C.V.
Guida
 
E.
Evans
 
M.A.
Miller
 
A.A.
Arumugam
 
T.V.
, et al 
Sex-dependent effects of G protein coupled estrogen receptor activity on outcome after ischemic stroke
Stroke
2014
, vol. 
45
 (pg. 
835
-
841
)
[PubMed]
154
Revankar
 
C.M.
Mitchell
 
H.D.
Field
 
A.S.
Burai
 
R.
Corona
 
C.
Ramesh
 
C.
Sklar
 
L.A.
Arterburn
 
J.B.
Prossnitz
 
E.R.
 
Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30
ACS Chem. Biol.
2007
, vol. 
2
 (pg. 
536
-
544
)
[PubMed]
155
Pupo
 
M.
Vivacqua
 
A.
Perrotta
 
I.
Pisano
 
A.
Aquila
 
S.
Abonante
 
S.
Gasperi-Campani
 
A.
Pezzi
 
V.
Maggiolini
 
M.
 
The nuclear localization signal is required for nuclear GPER translocation and function in breast Cancer-Associated Fibroblasts (CAFs)
Mol. Cell Endocrinol.
2013
, vol. 
376
 (pg. 
23
-
32
)
[PubMed]
156
Samartzis
 
E.P.
Noske
 
A.
Meisel
 
A.
Varga
 
Z.
Fink
 
D.
Imesch
 
P.
 
The G protein coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer
PLoS One
2014
, vol. 
9
 pg. 
e83296
 
[PubMed]
157
Kumar
 
R.
Balhuizen
 
A.
Amisten
 
S.
Lundquist
 
I.
Salehi
 
A.
 
Insulinotropic and antidiabetic effects of 17beta-estradiol and the GPR30 agonist G-1 on human pancreatic islets
Endocrinology
2011
, vol. 
152
 (pg. 
2568
-
2579
)
[PubMed]
158
Broselid
 
S.
Berg
 
K.A.
Chavera
 
T.A.
Kahn
 
R.
Clarke
 
W.P.
Olde
 
B.
Leeb-Lundberg
 
L.M.
 
G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase Aanchoringprotein 5 (AKAP5) that constitutively inhibits cAMP production
J. Biol. Chem.
2014
, vol. 
289
 (pg. 
22117
-
22127
)
[PubMed]
159
Qiu
 
J.
Ronnekleiv
 
O.K.
Kelly
 
M.J.
 
Modulation of hypothalamic neuronal activity through a novel G-protein-coupled estrogen membrane receptor
Steroids
2008
, vol. 
73
 (pg. 
985
-
991
)
[PubMed]
160
Feldman
 
R.D.
Limbird
 
L.E.
 
Copernicus revisited: overturning Ptolemy's view of the GPER universe
Trends Endocrinol. Metab.
2015
, vol. 
26
 (pg. 
592
-
594
)
[PubMed]