Preeclampsia (PE) is a form of gestational hypertension that complicates ∼5% of pregnancies worldwide. Over 70% of the fatal cases of PE are attributed to cerebral oedema, intracranial haemorrhage and eclampsia. The aetiology of PE originates from abnormal remodelling of the maternal spiral arteries, creating an ischaemic placenta that releases factors that drive the pathophysiology. An initial neurological outcome of PE is the absence of the autonomically regulated cardiovascular adaptations to pregnancy. PE patients exhibit sympathetic overactivation, in comparison with both normotensive pregnant and hypertensive non-pregnant females. Moreover, PE diminishes baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy. The absence of the cardiovascular adaptations to pregnancy, combined with sympathovagal imbalance and a blunted BRS leads to life-threatening neurological outcomes. Behaviourally, the increased incidences of maternal depression, anxiety and post-traumatic stress disorder (PTSD) in PE are correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature birth. This review addresses these neurological consequences of PE that present in the gravid female both during and after the index pregnancy.

INTRODUCTION

Preeclampsia (PE) is a distinct form of gestational hypertension that typically presents after the 20th week of gestation and complicates ∼5% of pregnancies worldwide [1,2], with developing countries having an incidence almost seven times higher than that of industrialized nations [3]. The current diagnostic criteria classifies PE (in the absence of proteinuria) as hypertension associated with thrombocytopenia (platelet count less than 10000 μl−1), liver dysfunction with liver transaminase blood levels at least double the normal concentration, elevated serum creatinine in excess of 1.1 mg/dl, pulmonary oedema and/or new-onset cerebral or visual impairments [4]. PE results in more than 60000 maternal deaths per year [3,5], with over 70% of these fatal cases being neurological in cause, and attributed to cerebral oedema, intracranial haemorrhage and eclampsia [3,57]. The exact aetiology of PE is unknown, but the disorder originates from abnormal remodelling of the spiral arteries at the maternal–placental interface, creating an ischaemic placenta that releases factors that drive the pathophysiology [8,9]. An initial neurological outcome of PE is the impairment of visceral motor autonomic control of maternal haemodynamics (Table 1), such that the cardiovascular physiological adaptations characteristic of healthy pregnancy are absent [1014]. One of these critical adaptations is the biphasic alteration of autonomic firing patterns, which adjusts sympathovagal balance to meet the metabolic demands of pregnancy [15,16]. PE is distinguished by sympathetic overactivation, where sympathetic firing is three times higher than in normotensive pregnant females, and quadruple the rate of hypertensive non-pregnant females [17,18]. Moreover, PE blunts baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy [14,1921].

Table 1
The visceral motor autonomic influence of the cardiovascular physiological adaptations of pregnancy compared with the maternal haemodynamics of PE

In healthy pregnancy, higher brain centres direct autonomic neural circuitry to produce an expanded blood volume, increased CO, decreased peripheral vascular resistance and biphasic alterations in sympathetic firing. However, in PE, these adaptations are absent, resulting in an insufficient blood volume increase, decreased CO, increased peripheral vascular resistance and sympathetic overexcitation.

Autonomic influence of the cardiovascular physiological adaptations of pregnancy
Cardiovascular physiological componentHigher brain inputsKey neural circuitryHealthy pregnancyPreeclampsia
Blood volume Circumventricular organs of the lamina terminalis PVN and SON magnocellular neurons excite the hyper-osmotic sensitive neurons of the posterior pituitary, which secrete vasopressin Vasopressin binding to renal V2 receptors promotes water reabsorptionStimulation of thirst mechanismIncrease in total blood volume of 1.2–1.6 litres (mostly plasma) Insufficient blood volume increase (∼200 ml) is directly correlated to low birth weight and IUGR 
CO RVLM RVLM excites cardiac preganglionic sympathetics located in the IMLCC at spinal cord levels T1–T4Cardiac preganglionic sympathetic neurons exit the cord at T1–T4 via spinal nervesCardiac preganglionic sympathetic neurons release ACh on cardiac postganglionic sympathetic neurons in paravertebral ganglia Cardiac postganglionic sympathetic nerves release NE that binds to β1 adrenergic receptors expressed on the cardiac SA and AV nodesIncreased cAMP and PKA signalling increases CO via increases in stroke volume, contractility and heart rate Decreased CO with concurrent increase in PVRAsymmetrical remodelling and left ventricular hypertrophy 
  Cardiac postganglionic sympathetics project to the cardiac sinoatrial (SA) and atrioventricular (AV) nodes   
PVR RVLM RVLM excites preganglionic sympathetics located in the IMLCC at spinal cord levels T1-L2Preganglionic sympathetic neurons exit the cord at T1-L2 via spinal nerves, and release ACh on postganglionic neurons in paravertebral gangliaPostganglionic fibres terminate in the tunica adventia layer of arteries and arterioles, and release NE Prostacyclin counteracts AngII vasoconstrictionNitric oxide release counteracts thromboxane by preventing vascular smooth muscle myosin light chain phosphorylationDecreased PVR Increased PVR due to enhanced AngII sensitivityAT1R-AABs and AT1-B2 heterodimers contribute to increased AngII sensitivityDecreased Ang 1–7 levels fail to counteract AngII vasoconstriction 
  NE diffuses to tunica media to bind to α12 receptors   
Sympatho-vagal
balance 
NTS, CVLM, RVLM Dorsomedial regions of the caudal NTS receive BR inputs via CNs IX and XCaudal NTS projects to and excites CVLMCVLM inhibits RVLM, and excites cardiac preganglionic parasympathetics in the NA Reduced LF:HF ratio in 1st trimesterVagal withdrawal and dominant sympathetic tone in 3rd trimester (increased LF:HF ratio) LF:HF ratio is higher than normotensive pregnant females and hypertensive non-pregnant femalesImpaired placental perfusion and renal blood flow 
Autonomic influence of the cardiovascular physiological adaptations of pregnancy
Cardiovascular physiological componentHigher brain inputsKey neural circuitryHealthy pregnancyPreeclampsia
Blood volume Circumventricular organs of the lamina terminalis PVN and SON magnocellular neurons excite the hyper-osmotic sensitive neurons of the posterior pituitary, which secrete vasopressin Vasopressin binding to renal V2 receptors promotes water reabsorptionStimulation of thirst mechanismIncrease in total blood volume of 1.2–1.6 litres (mostly plasma) Insufficient blood volume increase (∼200 ml) is directly correlated to low birth weight and IUGR 
CO RVLM RVLM excites cardiac preganglionic sympathetics located in the IMLCC at spinal cord levels T1–T4Cardiac preganglionic sympathetic neurons exit the cord at T1–T4 via spinal nervesCardiac preganglionic sympathetic neurons release ACh on cardiac postganglionic sympathetic neurons in paravertebral ganglia Cardiac postganglionic sympathetic nerves release NE that binds to β1 adrenergic receptors expressed on the cardiac SA and AV nodesIncreased cAMP and PKA signalling increases CO via increases in stroke volume, contractility and heart rate Decreased CO with concurrent increase in PVRAsymmetrical remodelling and left ventricular hypertrophy 
  Cardiac postganglionic sympathetics project to the cardiac sinoatrial (SA) and atrioventricular (AV) nodes   
PVR RVLM RVLM excites preganglionic sympathetics located in the IMLCC at spinal cord levels T1-L2Preganglionic sympathetic neurons exit the cord at T1-L2 via spinal nerves, and release ACh on postganglionic neurons in paravertebral gangliaPostganglionic fibres terminate in the tunica adventia layer of arteries and arterioles, and release NE Prostacyclin counteracts AngII vasoconstrictionNitric oxide release counteracts thromboxane by preventing vascular smooth muscle myosin light chain phosphorylationDecreased PVR Increased PVR due to enhanced AngII sensitivityAT1R-AABs and AT1-B2 heterodimers contribute to increased AngII sensitivityDecreased Ang 1–7 levels fail to counteract AngII vasoconstriction 
  NE diffuses to tunica media to bind to α12 receptors   
Sympatho-vagal
balance 
NTS, CVLM, RVLM Dorsomedial regions of the caudal NTS receive BR inputs via CNs IX and XCaudal NTS projects to and excites CVLMCVLM inhibits RVLM, and excites cardiac preganglionic parasympathetics in the NA Reduced LF:HF ratio in 1st trimesterVagal withdrawal and dominant sympathetic tone in 3rd trimester (increased LF:HF ratio) LF:HF ratio is higher than normotensive pregnant females and hypertensive non-pregnant femalesImpaired placental perfusion and renal blood flow 

Abbreviations: T1–T4, thoracic spinal cord levels 1–4; ACh, acetylcholine; NE, noradrenaline (norepinephrine); cAMP, cyclic AMP; T1-L2, thoracic spinal cord levels T1-L2; AT1R-AABs, agonistic autoantibodies to the angiotensin AT1 receptor; AT1-B2 heterodimer, AT1 receptor–Bradykinin-2 receptor heterodimer; Ang 1–7, angiotensin 1–7; CN IX, cranial nerve IX (glossopharyngeal nerve); CN X, cranial nerve X (vagus nerve); LF:HF, low frequency to high frequency ratio (index of sympathovagal balance).

In the absence of the cardiovascular adaptations to pregnancy (Figure 1), the combination of an impaired BRS, sympathovagal imbalance and pathogenic factors from the ischaemic placenta advance the sequelae of life-threatening white matter lesions (WMLs) [2224], cerebral oedema and haemorrhaging [2527] that can lead to executive dysfunction [2830]. Furthermore, PE establishes predispositions to anxiety [3133], depression [3436] and post-traumatic stress disorder (PTSD) [3742] in the gravid female, which are significantly correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature birth [3236,38]. This review examines the neural control of blood pressure in healthy pregnancy, and addresses the resulting neurological outcomes of PE that present both during and after the index pregnancy.

The neurological consequences and life-threatening implications of PE

Figure 1
The neurological consequences and life-threatening implications of PE

The initial pathophysiology of PE (grey boxes) originates from abnormal remodelling of the spiral arteries at the maternal–placental interface that creates placental ischaemia/hypoxia. The ischaemic placenta releases inflammatory cytokines, ROS and the anti-angiogenic factor sFlt-1. Furthermore, in the absence of the autonomically regulated cardiovascular adaptations to pregnancy, perturbations in cardiovascular physiology (orange circles) result. The combination of ischaemic placental pathogenic factors and the lack of cardiovascular adaptations to pregnancy, lead to cerebrovascular implications (middle red box) that include autoregulatory breakthrough, increased BBB permeability, CSF electrolyte imbalance, BRS impairment, sympathovagal imbalance. The life-threatening consequences (bottom left red box) include WMLs, cerebral oedema, haemorrhaging infarcts and eclamptic seizures. Executive dysfunction (bottom middle and right red boxes) include impaired processing speed that can persist for decades after the index pregnancy, delayed recall and auditory/verbal memory impairments. The behavioural outcomes of depression, anxiety and PTSD are all significantly associated with low fetal birth weight, IUGR and premature birth.

Figure 1
The neurological consequences and life-threatening implications of PE

The initial pathophysiology of PE (grey boxes) originates from abnormal remodelling of the spiral arteries at the maternal–placental interface that creates placental ischaemia/hypoxia. The ischaemic placenta releases inflammatory cytokines, ROS and the anti-angiogenic factor sFlt-1. Furthermore, in the absence of the autonomically regulated cardiovascular adaptations to pregnancy, perturbations in cardiovascular physiology (orange circles) result. The combination of ischaemic placental pathogenic factors and the lack of cardiovascular adaptations to pregnancy, lead to cerebrovascular implications (middle red box) that include autoregulatory breakthrough, increased BBB permeability, CSF electrolyte imbalance, BRS impairment, sympathovagal imbalance. The life-threatening consequences (bottom left red box) include WMLs, cerebral oedema, haemorrhaging infarcts and eclamptic seizures. Executive dysfunction (bottom middle and right red boxes) include impaired processing speed that can persist for decades after the index pregnancy, delayed recall and auditory/verbal memory impairments. The behavioural outcomes of depression, anxiety and PTSD are all significantly associated with low fetal birth weight, IUGR and premature birth.

THE AUTONOMIC REGULATION OF CARDIOVASCULAR PHYSIOLOGICAL ADAPTATIONS OF HEALTHY PREGNANCY COMPARED WITH THE MATERNAL HAEMODYNAMICS OF PE

One of the initial and most dramatic changes observed in the gravid female is an expanded blood volume [43]. To prepare for a typical blood loss of 500 ml (vaginal) to 1 litre (Caesarean) during delivery, osmoregulatory brain circuity [44] acts via neuroendocrine mechanisms to elicit increases in total blood volume beginning at 6 weeks gestation [45]. During pregnancy, the plasma osmolality threshold for stimulating osmoreceptors is lowered from the normal 285 to 270 mOsm/kg [46]. Relaxin secreted by the corpus luteum [47] acts on the organum vasculosum of the lamina terminalis (OVLT) and the subfornical organ that project to and excite the magnocellular neurons in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus [48]. Axons of these PVN and SON cell bodies project into the posterior pituitary, where they release vasopressin into the general circulation [44,49,50]. Vasopressin acts on renal V2 receptors to up-regulate aquaporin-2 water channel expression on the cells of the distal convoluted tubule and collecting duct, thereby increasing the amount of water reabsorbed from urine and returning it to the blood volume [51,52]. As a result, by 32 weeks gestation 1.2–1.6 litres has been added to the total blood volume [53], which is almost exclusively increased plasma volume [43]. In stark contrast, preeclamptic women exhibit an increase of only ∼ 200 ml in blood volume, which is directly correlated to the low birth weight and IUGR [54,55] seen in children that are born during the index pregnancy [10].

Another critical adaptation that occurs in response to this expanded blood volume is an increase in cardiac output (CO) [56]. The metabolic demands of the fetoplacental unit require that 25% of the CO be allotted to arterial blood flow to the uterus [57]. To increase the CO, the rostral ventrolateral medulla (RVLM) of the brain stem sends excitatory inputs to the cardiac preganglionic sympathetic nerves, residing in the intermediolateral cell column (IMLCC) of the spinal cord at thoracic levels T1–T4 [5860]. Exiting the cord via spinal nerves at the same levels, these cardiac preganglionic nerves synapse with postganglionic fibres within paravertebral ganglia [5961]. Cardiac postganglionic sympathetic fibres project to the sinoatrial and the atrioventricular nodes of the heart, and release noradrenaline (norepinephrine) that binds to β1 adrenergic receptors [60,62]. The resulting signalling pathway increases cyclic AMP and activates protein kinase A (PKA), which leads to increased CO [58,60,63,64].

Influenced by this autonomic input, the CO increases early in the 1st trimester of normal pregnancy so that by 37–42 weeks gestation the average output is 6 litre/min [6567]. Three factors contribute to this increase in CO, each varying in dominance over the time course of gestation. Beginning in the 1st trimester, stroke volume and preload, both associated with the expansion in total blood volume, participate in the augmentation of CO [65,6870]. Conversely, in the 2nd and 3rd trimesters, the HR, increased by 15–20 beats/min, becomes the primary cause of the increased CO which enables adequate nutrient/waste exchange to the developing fetus [65,71]. In clinical cases of PE, however, CO is significantly reduced with an increase in peripheral vascular resistance (PVR) [72,73]. This pathophysiological reduction in CO is manifested in preeclamptic patients by asymmetrical remodelling and hypertrophy of the left ventricle [74,75]. Moreover, increased levels of atrial and brain natriuretic peptides are directly correlated to the degree of left ventricular dysfunction in PE [12].

Within the context of the increases in blood volume and CO, the adaptation of a decrease in the PVR occurs in healthy pregnancy. The visceral motor autonomic innervation of the systemic vasculature produces forceful vasoconstriction by increasing the PVR [76,77]. Postganglionic sympathetic nerves terminate in the tunica adventitia of arteries and arterioles and release noradrenaline that diffuses into the tunica media to bind to α1 or α2 adrenergic receptors expressed on vascular smooth muscle cells producing vasoconstriction [5961]. In healthy pregnancy, this vasoconstriction is attenuated, and PVR is reduced by complex neurohormonal interactions that diminish the sensitivity to angiotensin II (AngII) [7880], offsetting the vasoconstrictive effects of thromboxane [81] and lowering both plasma osmolarity and arterial load [8284]. Moreover, starting at the 5th week of gestation, progesterone and prostaglandin levels promote vasodilation, and as a result the PVR decreases ∼10% from baseline levels [76,85,86]. The PVR reaches its lowest level at 20 weeks’ gestation, ∼ 35% decrease from baseline levels, and persists at this level through week 32 [65,77,87]. Prostacyclin, an endothelium-derived eicosanoid, counteracts the vasoconstrictive effects of AngII during pregnancy [79,80]. Moreover, enhanced release of nitric oxide attenuates the actions of thromboxane by preventing the phosphorylation of myosin light chains in vascular smooth muscle [88,89]. In addition, production of relaxin increases during the first trimester and at term [82,84]. This peptide contributes both to the reduction in PVR and to the increase in CO [82,84]. Thus, despite the presence of increased AngII levels during normal pregnancy, a decreased sensitivity to AngII results [9092].

However, in PE the PVR is elevated due to a heightened sensitivity to AngII [93], contributing to the hypertensive state. Several studies suggest that agonistic autoantibodies against the AngII AT1 receptor (AT1R-AABs) are associated with enhanced AngII sensitivity [9498]. AT1R-AABs have been observed to increase production of the NF-κB/NADPH oxidase-mediated formation of reactive oxygen species (ROS) [99], plasminogen activator inhibitor, [100,101] and soluble fms-related tyrosine kinase-1 (sFlt-1) [102]. However, this significant correlation between AT1R-AAB titre and elevated PVR is observed mostly in severe cases of PE [103,104]. In addition, levels of the vasodilatory heptapeptide angiotensin 1–7 (Ang 1–7), which attenuates the vasoconstrictive properties of AngII, are significantly diminished in PE [91]. Further amplifying AngII sensitivity in PE is the increased expression of the angiotensin 1 receptor-bradykinin 2 receptor (AT1-B2) heterodimer on blood cells and omental vessels [105107], that increase the PVR by accentuating AngII-mediated vasoconstriction. The pathological elevations in PVR observed in PE are manifested by increased arterial stiffness that not only reveals endothelial dysfunction, but also indicates the vulnerability to left ventricular hypertrophy and cardiac irregularities [74,108,109], all of which contribute to the hypertension associated with PE.

Critical to understanding the characteristic enhanced AngII sensitivity of PE are the changes that occur to the renin–angiotensin–aldosterone systems (RAAS) in both the kidney [110113] and more importantly the placenta [114131]. Mistry et al. [119] observed that the placental RAAS exhibits the same degree of autonomy as the renal RAAS, but whose components are derived from both maternal and fetal sources. Rising oestrogen plasma levels during pregnancy activate the placental RAAS, with concurrent increases in angiotensinogen (AGT) and renin levels [110,114,120,132]. Compared with the chorionic villi, the maternal decidua produces greater amounts of both total and active renin [114,123]. The hallmark placental ischaemia observed in PE triggers increased expression of prorenin receptors (PRRs), which promote the generation of angiotensin I from AGT, and the subsequent cleavage of AngII from AngI by angiotensin converting enzyme (ACE) [119]. Moreover, the binding of prorenin to PRRs exerts nearly a 4-fold increase in the catalytic efficiency of PRR [117,133].

The placental RAAS demonstrates high sensitivity to tissue levels of ROS, which serve as a signal for both angiogenesis [116] and placental development [117]. Overactivation of the placental RAAS, such as in cases of placental ischaemia, results in excess local production of AngII, which acting on angiotensin II Type 1 receptors (AT1Rs) expressed by placental trophoblasts [124], can lead to the deleterious effects of low birthweight and IUGR [119]. Recently, Zhou et al. [130] have elucidated the mechanism between placental RAAS overactivation and the enhanced pressor response observed in PE. The AGT protein maintains a state of equilibrium between its oxidized and reduced forms [130]. Excessive ROS production by the ischaemic placenta catalyses a disulfide linkage in the angiotensin portion of AGT, and this oxidized form of AGT results in the 4-fold increase in Ang I production [117,130], subsequent cleavage to AngII, and then enhanced pressor response brought about by the vasoconstrictive properties of AngII [119,134]. Thus, maternally derived AngII produced from the uterine placental bed acts in an endocrine manner to produce vasoconstriction of the uterine spiral arteries, further exacerbating placental ischaemia [114,115].

As observed by Nartita et al. [120], overactivation of the placental RAAS by placental ischaemia leads to increased AngII-mediated pressor response and sympathetic nerve activity. If left untreated, the resulting hypertension can increase the risk of the loss of cerebral blood flow (CBF) autoregulation, increase in cerebral perfusion pressure (CPP) and eventual damage to the blood brain barrier (BBB) [135,136]. These initial neurological outcomes resulting from overactivation of the placental RAAS can lead to life threatening neurological consequences, which will be addressed later in the text.

The above described cardiovascular haemodynamic alterations of pregnancy are mediated by the sympathetic and parasympathetic divisions of the autonomic nervous system via sympathovagal balance [137,138]. Sympathovagal balance has been assessed in healthy pregnant and preeclamptic women by spectral analysis of heart rate variability (HRV) by comparing the ratio of the low frequency (0.04–0.15 Hz) to high frequency (0.15–0.40 Hz) domains of the HRV, termed the LF:HF ratio [139142]. During the first trimester of normal healthy pregnancy, a dominant HF exists (0.15–0.40 Hz), which is consistent with a robust vagal control of heart rate [16]. By the third trimester, however, a gradual increase in the LF:HF ratio indicates that a biphasic change in autonomic inputs occurs, characterized by a vagal withdrawal over heart rate and a dominant sympathetic tone [15,16,143]. Kuo et al. [16,144,145] observed that this biphasic shift towards augmented sympathetic tone in late pregnancy is in part attributed to aortocaval compression by the gravid uterus. In these cases, the gravid uterus compresses upon the maternal abdominal aorta and inferior vena cava, resulting in both a decrease in CO and venous return, and eliciting compensatory changes in sympathetic tone [146].

In PE, however, the abnormal uterine perfusion adversely affects autonomic control of cardiovascular function [14,147], such that the LF:HF ratio is elevated beyond that seen in normotensive pregnant females [140,142,148], indicative of sympathetic overactivation and sympathovagal imbalance [11,17,149151]. Thus, the impaired regulation of heart rate and blood pressure by sympathetic overactivation [141,152] further exacerbates the abnormal placental perfusion and renal blood flow in preeclamptic women [153]. This sympathetic overactivation may be the result of placental pathogenic factors (e.g. inflammatory cytokines) acting primarily on brainstem nuclei that govern sympathovagal balance [154156] of cardiovascular physiology. In other forms of hypertension, the mechanism is disinhibition of the RVLM by up-regulating the expression of GABAB receptors in the regions of the nucleus of the solitary tract that receive baroreceptor (BR) afferents (Figure 2) [157163]. Whether this mechanism is active in PE is an area ripe for new research.

GABABR-mediated disinhibition of the RVLM as a proposed mechanistic target for future PE studies

Figure 2
GABABR-mediated disinhibition of the RVLM as a proposed mechanistic target for future PE studies

Neurons in the dorsomedial regions of the caudal NTS receive and integrate BR afferent inputs. Normally, BR inputs excite these NTS neurons, which in turn, excites the CVLM. The CVLM reduces sympathetic tone using dual circuitries. First, the CVLM excites preganglionic parasympathetic neurons in the NA which project (via the vagus nerve) to the heart to reduce the heart rate and stroke volume. Secondly, the CVLM projects inhibitory (GABAergic) projections to the ‘vasomotor centre’ RVLM. Inhibition of the RVLM reduces the sympathetic tone to the blood vessels, heart and kidneys. However, in several hypertensive studies, GABABR-mediated inhibition of these NTS neurons occurs (expanded synapse in figure). In the presence of AngII, up-regulated expression of GABABR occurs on NTS neurons. Presynaptically, GABABRs inhibit N-type (CaV2.2) and P/Q-type (CaV2.1) Ca2+ channels, and thus reduce the probability of glutamate release into the synaptic cleft. Postsynaptically, GABABRs hyperpolarize NTS neurons by activating inward-rectifying K+ channels, inhibiting L-type Ca2+ channels and producing a voltage-sensitive Mg2+ block of NMDA receptors, as well as preventing their phosphorylation by PKA. Hyperpolarization of NTS neurons by GABABRs result in insufficient excitatory input (dashed arrows) to the NA and CVLM. Decreased parasympathetic input to the heart via the NA results in increases in heart rate and stroke volume. More importantly, the hyperpolarized NTS neurons cannot excite the CVLM, resulting in a disinhibition of the RVLM. No longer governed by the GABAergic tone from the CVLM, the RVLM increases sympathetic tone to the vasculature, heart and kidneys. Given that PE is characterized by enhanced AngII sensitivity, an impaired BR reflex and sympathetic overexcitation, this GABABR-mediated disinhibition of the RVLM is proposed as a mechanistic target for future PE studies.

Figure 2
GABABR-mediated disinhibition of the RVLM as a proposed mechanistic target for future PE studies

Neurons in the dorsomedial regions of the caudal NTS receive and integrate BR afferent inputs. Normally, BR inputs excite these NTS neurons, which in turn, excites the CVLM. The CVLM reduces sympathetic tone using dual circuitries. First, the CVLM excites preganglionic parasympathetic neurons in the NA which project (via the vagus nerve) to the heart to reduce the heart rate and stroke volume. Secondly, the CVLM projects inhibitory (GABAergic) projections to the ‘vasomotor centre’ RVLM. Inhibition of the RVLM reduces the sympathetic tone to the blood vessels, heart and kidneys. However, in several hypertensive studies, GABABR-mediated inhibition of these NTS neurons occurs (expanded synapse in figure). In the presence of AngII, up-regulated expression of GABABR occurs on NTS neurons. Presynaptically, GABABRs inhibit N-type (CaV2.2) and P/Q-type (CaV2.1) Ca2+ channels, and thus reduce the probability of glutamate release into the synaptic cleft. Postsynaptically, GABABRs hyperpolarize NTS neurons by activating inward-rectifying K+ channels, inhibiting L-type Ca2+ channels and producing a voltage-sensitive Mg2+ block of NMDA receptors, as well as preventing their phosphorylation by PKA. Hyperpolarization of NTS neurons by GABABRs result in insufficient excitatory input (dashed arrows) to the NA and CVLM. Decreased parasympathetic input to the heart via the NA results in increases in heart rate and stroke volume. More importantly, the hyperpolarized NTS neurons cannot excite the CVLM, resulting in a disinhibition of the RVLM. No longer governed by the GABAergic tone from the CVLM, the RVLM increases sympathetic tone to the vasculature, heart and kidneys. Given that PE is characterized by enhanced AngII sensitivity, an impaired BR reflex and sympathetic overexcitation, this GABABR-mediated disinhibition of the RVLM is proposed as a mechanistic target for future PE studies.

Despite the routine clinical use of the LF:HF ratio in assessing sympathovagal balance, caution should be taken when interpreting data due to confounding non-neural factors and mathematical influences [164]. For instance, the HF peak, typically associated with parasympathetic activity, may exhibit up to a 10% change in frequency due to augmented sympathetic nerve activation [164166]. Conversely, the upper limits of sympathetic activation may be offset by cardiac parasympathetic input, such as that observed during the ‘diving reflex’ [167], where marked bradycardia occurs despite a robust increase in sympathetic nerve output [164,168]. Mathematical confounding variables [169] can occur when the HRV is not divided by the average R-R interval [164,170]. Moreover, respiratory influences on the LF:HF ratio, as is observed in heart transplant patients that lack cardiac innervation [164], exhibit an atrial stretch contribution to the LF:HF ratio during the respiratory cycle [164,171]. Given these limitations of the LF:HF ratio, microneurography of skeletal muscle sympathetic nerve activity (MSNA) may be an alternative method of accurately evaluating sympathovagal balance.

Microneurography clinically assesses multiunit sympathetic activity of the peripheral vasculature by performing percutaneous recordings of action potentials conducted by peripheral nerves [172,173]. Sex-dependent differences are observed in MSNA recordings, such that women exhibit β-adrenergic vasodilation that counteracts the vasoconstrictive properties associated with increased MSNA [174]. This effect has been observed in normotensive pregnant women, who demonstrated enhanced MSNA in spite of no significant change in blood pressure [141,152,172]. Microneurographic studies of preeclamptic women reported amplified MSNA when compared with normotensive pregnant women, but were not significantly different from women diagnosed with pregnancy-induced hypertension (PIH), suggesting that sympathetic hyperactivity is not solely responsible for the renal dysfunction presented in cases of PE [172,175]. These data emphasize that it is unclear whether sympathetic hyperactivity actually causes gestational hypertension, or if it is a mechanistic consequence of angiogenic imbalance and endothelial dysfunction [172,176].

THE BARORECEPTOR REFLEX IN HEALTHY PREGNANCY AND PREECLAMPSIA

Though it was once regarded as a short-term regulator of abrupt changes in blood pressure, the BR reflex is now considered to play an integral role in chronic hypertensive states [177].

Basic circuitry of the baroreceptor reflex

Located within the arterial walls of the aortic arch and immediately rostral to the bifurcation of the common carotid artery within the carotid sinus [178] stretch-sensitive BRs detect beat-to-beat fluctuations in arterial pressure [62,179,180]. Aortic BRs transmit impulses via the vagus nerve (CN X), whereas the carotid BRs send afferent signals via the glossopharyngeal nerve (CN IX). The cell bodies of the aortic BRs and carotid BRs reside in the nodose and petrosal ganglia, respectively, and they both make excitatory (glutamatergic) synapses on neurons in the dorsomedial region of the caudal solitary tract nucleus (NTS) [62,181,182]. The NTS receives and integrates these BR afferent inputs, and projects excitatory terminals to the caudal ventrolateral medulla (CVLM) [62,181,182]. In turn, the CVLM excites preganglionic parasympathetic neurons in the nucleus ambiguus (NA), which also receives excitatory input from the NTS, and projects (via the vagus nerve) to the heart to reduce the heart rate and stroke volume [62,181]. More importantly, the CVLM projects inhibitory (GABAergic) projections to the ‘vasomotor centre’ of the cardiovascular system, the RVLM [59,181,183]. The RVLM projects to and synapses on preganglionic sympathetic neurons located in the IMLCC of the spinal cord [59,179,182]. Inhibition of the RVLM reduces the sympathetic tone to IMLCC, and it is this decrease in sympathetic nerve activity to the blood vessels, heart and kidneys, that produces a corresponding decrease in mean arterial pressure [180,181,183].

Alterations of the BR reflex in healthy and preeclamptic pregnancies

The CNS nuclei of the BR reflex circuitry express receptors for sex hormones [184]. Oestradiol has been observed to affect BRS, whereas progesterone modulates the sympathetic output of the RVLM [184]. The neurosteroid 3-α-hydroxydihydroprogesterone (3-α-OH-DHP), a metabolite of progesterone, augments inhibitory GABAergic tone of the RVLM by binding to GABAA receptors expressed by RVLM neurons, and increasing Cl conductance [185,186]. Through this hormonal modulation of neural excitability, normal pregnancy is characterized by a reduction in BRS [185,187190].

Conversely, the BR reflex is impaired in PE beyond that observed in healthy pregnancy [14,19], and presents with beat-to-beat variations in blood pressure, heart rate and BRS that are utilized clinically to predict cases of PE [191,192]. When combined with Doppler sonography (for detection of reduced uterine perfusion), analysis of these beat-to-beat variations in blood pressure, heart rate and BR reflex sensitivity, PE is predicted with a positive predictive accuracy of over 71% [21].

These clinical observations of BR reflex pathophysiology associated with PE provide the rationale for future studies on the regions of the NTS that receive and integrate BR afferent inputs. Indeed, a variety of hypertensive models have demonstrated mechanistic alterations occurring on NTS neurons [160163,193201]. Although none of these studies modelled PE, the molecular pathways implicated in the increased pressor response warrant investigation in an animal model of PE [202]. The electrophysological alterations that were observed in NTS neurons in these animal models are summarized below.

DIVERSE MODELS OF HYPERTENSION DEMONSTRATE ELECTROPHYSIOLOGICAL ALTERATIONS OCCURING IN THE NTS

GABAB receptors (GABABRs) are metabotropic G-protein coupled receptors (GPCRs) [203,204] that hyperpolarize the neuron (Figure 2) presynaptically [205,206] and postsynaptically [203206]. NTS neurons hyperpolarized by increased GABABR activity cannot excite the CVLM and NA, nor can the CVLM sufficiently excite the preganglionic parasympathetic neurons of the NA [158,180,195,207]. As a result, the NA provides insufficient parasympathetic input to the heart, and the CVLM no longer inhibits the RVLM, creating a sympathovagal imbalance that leads to vasoconstriction, increased heart rate and enhanced renal sympathetic nerve activity [158,180,195,207]. Pharmacological studies in spontaneously hypertensive rats (SHRs) [162,208210], and hypertensive Sprague–Dawley rats induced with a one-kidney figure-8 renal wrap [163,195,198,201,211] have demonstrated that the enhanced expression and activation of GABABRs in the regions of the NTS that receive and integrate BR afferent inputs results in hypertension. Additionally, transfer of the GABABR gene into the NTS of normotensive rats resulted in rapid onset of hypertension, increased heart rate and increased plasma noradrenaline levels, all of which remained elevated for the duration of the 14-day study [157]. This GABABR-mediated pressor response is potentiated by the actions of AngII on NTS neurons [161].

NTS neurons express AT1Rs with one of the highest receptor densities within the BBB [212,213], and AngII acts at these receptors to dampen the BR afferent inputs in both hypertensive and normotensive animals [214,215]. Moreover, AngII increases the expression of GABABRs on NTS neurons [161] and synergistically enhances the pressor response [160]. Thus, AngII blunts BR afferent inputs by augmenting the GABABR-mediated inhibitory currents on NTS neurons, leading to disinhibition of the RVLM and increased sympathetic tone to the heart, vasculature and kidneys [160,163,180,207]. Therefore, given the heightened AngII sensitivity observed in PE [216], and that the NTS neurons that receive BR afferent inputs exhibit one of the highest AT1R expression levels within the BBB [212,213], these GABABRs on NTS neurons would serve as prime mechanistic targets for future studies employing an animal model of PE [202].

In addition to GABABRs, α2-adrenoreceptors (α2-adrenoreceptors) represent an alternative mechanistic target for blood pressure control in PE. The activation of α2-adrenoreceptors expressed by astrocytes residing in the NTS elicits a decrease in blood pressure [197,217,218]. However, when these astrocytic α2-adrenoreceptors engage in cross-talk with neuronal adenosine-1 receptors (A1Rs) [196], or form heterodimers with μ-opoid receptors [197], hypertension can occur. Synaptic release of noradrenaline activates astrocytic α2-adrenoreceptors, which triggers the extracellular release of ATP, that is then hydrolysed to adenosine [196,219,220]. The adenosine binds to presynaptic A1Rs and induces hyperpolarization by inactivating Ca2+ inward channels and activating K+ channels [196,221]. Studies employing SHRs observed increased A1R expression in the NTS [194,222], with enhanced sensitivity to adenosine [222] that blunted BRS resulting in a hypertensive state [193,196,223,224]. A hypertensive response in the NTS can also occur when μ-opioid receptors form heterodimers specifically with the α2A class of α2-adrenoreceptors (α2A-ARs) [197,225]. Pharmacological studies of SHRs demonstrated this hypertensive effect by microinjecting a μ-opioid agonist into the NTS, in which the μ-opioid-α2A-AR heterodimers blocked nitric oxide-mediated vasodilation [197]. Conversely, administration of a μ-opioid antagonist into the NTS prohibits the formation of μ-opioid-α2A-AR heterodimers, resulting in a decrease in blood pressure in SHRs but not in WKY rats [197,226]. These results in rat models of primary hypertension implicate GABABRs and α2-adrenoreceptors as prime candidates for mechanistics studies examining the neurogenic control of blood pressure in PE.

CEREBROVASCULAR AND HIGHER FUNCTION NEUROLOGICAL CONSEQUENCES OF PE

In addition to the neural control of cardiovascular maladaptations that occur in PE, PE also induces deleterious neurological outcomes in affected mothers. Next, we examine the effects PE has on brain volume, cerebral haemodynamics, WMLs, electrophysiological profile (Table 2) and cognitive and behavioural impairments.

Table 2
Alterations in brain volume, cerebral haemodynamics, white matter integrity and electrophysiological profile observed in maternal brains after a preeclamptic index pregnancy

Normal pregnancy is associated with a reduction in both grey and white matter volumes, and an enlargement of the ventricular spaces, with these changes reversing postpartum. However, in preeclampsia this atrophy in brain volume and expansion of the ventricles can persist for decades. In moderate to severe cases of PE, cerebrovascular autoregulation is lost, resulting in increased BBB permeability, brain water content and an exacerbated risk of vasogenic oedema. The pattern and distribution pattern of WMLs correlate to neurological outcome. The occipital lobe, a region of interest in visual disturbances, exhibits electrophysiological changes as a result of preeclampsia.

CNS componentHealthy pregnancyPreeclampsia
Brain volume Grey matter Atrophy reverses postpartum Atrophy persists decades after index pregnancy 
 White matter   
 Ventricular spaces Expansion reverses postpartum Expansion persists decades after index pregnancy 
Cerebral haemodynamics Cerebrovascular autoregulation – Decreased 
 Cerebral perfusion pressure – Increased 
 BBB permeability –  
 Brain water content –  
 Risk of vasogenic oedema –  
WMLs WML distribution pattern  Significantly correlated to neurological outcome 
 Sympathetic innervation – Frontal cortical regions that regulate neurogenic sympathetic tone are less susceptible to WMLs 
   Posterior regions (e.g. occipital lobe) are more vulnerable to blood pressure changes and WMLs 
Electrophysiology Electroencephalogram – Diffuse and focal slowing of delta and theta waves recorded from occipital lobe 
CNS componentHealthy pregnancyPreeclampsia
Brain volume Grey matter Atrophy reverses postpartum Atrophy persists decades after index pregnancy 
 White matter   
 Ventricular spaces Expansion reverses postpartum Expansion persists decades after index pregnancy 
Cerebral haemodynamics Cerebrovascular autoregulation – Decreased 
 Cerebral perfusion pressure – Increased 
 BBB permeability –  
 Brain water content –  
 Risk of vasogenic oedema –  
WMLs WML distribution pattern  Significantly correlated to neurological outcome 
 Sympathetic innervation – Frontal cortical regions that regulate neurogenic sympathetic tone are less susceptible to WMLs 
   Posterior regions (e.g. occipital lobe) are more vulnerable to blood pressure changes and WMLs 
Electrophysiology Electroencephalogram – Diffuse and focal slowing of delta and theta waves recorded from occipital lobe 

Volume changes in the brains of preeclamptic women during the peripartum period

Observed in humans [227], and in rodents [228], healthy gravid females undergo a reduction in both grey and white matter volumes of the brain, whereas the volume of the lateral ventricles are increased. These changes in volume in the brain and ventricular spaces begin at the moment of placental implantation, peak at term and slowly reverse months after delivery. Moreover, human studies have shown that while the brain decreased in volume, there were also concomitant volume increases in the heart, kidneys, thyroid gland and extracellular fluid, with all changes reversing within 6 months postpartum [227,228]. However, these volumetric changes were even more pronounced in human PE patients [227,228]. Women in the PE group had significantly smaller brain volumes, with corresponding increases in lateral ventricular volumes. A recent study involving a large multiethnic and racially diverse sample observed that women with a history of hypertensive pregnancy had smaller brain volumes and larger degrees of atrophy decades after the index pregnancy [229]. Although not a sole indicator of neurological dysfunction, these alterations in brain size and volume are accompanied by changes in cerebral haemodynamics, electrophysiology, cognition, and behaviour in human PE patients.

Cerebral haemodynamics in healthy compared with preeclamptic gravid females

In normotensive individuals, CBF is maintained at ∼50 ml per 100 g of brain tissue per minute, given that the CPP and intracranial pressure is in the range of 60–150 mmHg [61,135,136]. When the CPP exceeds 150 mmHg, autoregulation can no longer be maintained and ‘breakthrough’ occurs, such that the decrease in cerebrovascular resistance (CVR) results in hyperperfusion, BBB disruption and vasogenic oedema [61,135,136], which can contribute to neurological complications associated with hypertensive encephalopathy and eclampsia [61,135,136]. Significant changes in cerebral haemodynamics have been observed in both clinical [230232] and animal model [233] studies of PE. Compared with normotensive pregnant women, PE patients exhibit augmented CPP in the middle [231], anterior, and posterior [230] cerebral arteries, with accompanying changes in cerebral artery resistance indices [230]. An animal model PE study confirmed that placental ischaemia was the driving force of the CBF pathology, and that the increased brain water content was the result of increased BBB permeability and smaller diameter cerebral vessels being burdened with increased pressure [233]. Thus, it is possible that the PE-decreased CVR and hyperperfusion causes the brain to be susceptible to vasogenic oedema by creating an unfavourable hydrostatic pressure gradient when pressure is elevated [61,135,136].

Anatomical distribution and volume of white matter lesions in PE

WMLs are a common neurological corollary that result from the altered haemodynamics of PE [5,234,235]. Diagnostic imaging reveals that these WMLs can persist for years after the index pregnancy [2224,229]. Counterintuitively, the pattern of distribution of WMLs associated with PE differs from that of posterior reversible encephalopathy syndrome (PRES). PRES is more often associated with eclampsia [7,234]. The WMLs resulting from PRES tend to predominate in the occipital, parietal and frontal lobes, are hemispheric, and bilaterally symmetric [25]. The WMLs seen in PE patients are distributed in the frontal lobes [24], and tend to dominate in cases of early-onset PE [23]. Interestingly, a relationship exists between WML distribution patterns and the degree of sympathetic innervation supplied to the brain regions most at risk for sustaining WMLs [236]. Myogenic and neurogenic elements comprise cerebral autoregulation, in which proper neurogenic function is dependent upon sympathetic innervation [236]. In PRES, elevated blood pressure weakens myogenic homoeostatic mechanisms via vascular endothelial dysfunction, causing cerebral autoregulation to rely more upon its neurogenic component [236238]. As a result, brain regions with robust sympathetic innervation (e.g. frontal lobe) are relatively safeguarded against serum extravasation through vasoconstriction. This contrasts with regions such as the occipital lobe, which receives meager sympathetic innervation, that are more susceptible to developing WMLs after being exposed to acute oscillations in cerebral blood pressure [236,239].

There is a strong correlation between the presence and distribution of WMLs and poor neurological outcome in PE, particularly when accompanied by cerebral oedema, intracranial haemorrhage and eclampsia [6,7]. Moreover, during the peripartum period 47% of ischaemic strokes are the result of severe PE, and these strokes account for 12% of the annual maternal death rate globally [240243]. One quarter of PE patients that suffer an ischaemic stroke will incur permanent brain damage [5]. Diagnostic imaging studies of PE patients that sustained a cerebrovascular accident demonstrate WMLs in the frontal, parietal, insular and temporal lobes in women 10–26 years after being diagnosed with PE or eclampsia [23,24].

Electrophysiological changes exhibited by healthy, preeclamptic and eclamptic gravid females

The electroencephalogram (EEG) is sensitive enough to distinguish if an intra-partum seizure has resulted from eclampsia or if the mother suffered an epileptic seizure during labour [244,245]. Furthermore, hypertensive PE and eclamptic women exhibit changes in EEG recordings compared with normotensive pregnant and non-pregnant females [244]. PE and eclamptic women demonstrate both diffuse and focal slowing of delta and theta waves, typically localized to the occipital lobe [234,244247]. Eclamptic women exhibit a significantly greater number of spike discharges than PE patients [234,244247]. Collectively, these anatomical, haemodynamic, histopathological and electrophysiological changes that result from PE are manifested in cognitive and behavioural impairments.

Cognitive and behavioural impairments in PE: associations with increased risk of low fetal birth weight, intrauterine growth restriction and premature birth

Maternal cognitive dysfunction is associated with PE (Figure 3) [2830], where impairment severity correlates to the total number of eclamptic seizures [248]. A pilot study suggested that these self-reported deficits from formerly PE women exhibited auditory-verbal memory deficits, impaired learning and delayed recall, all of which were independent of depression or anxiety [29]. However, a long-term follow up study found no evidence of neurocognitive dysfunction despite the self-reporting of impairments, but the investigators did conclude that this increase in self-reported deficits is an indicator for cognitive impairment and/or dementia later in life [28]. A more recent study concluded that hypertensive pregnancy disorders may be independent risk factors of cognitive decline, after adjusting for cardiovascular disease and known cardiovascular disease risk factors [229]. Human subjects with a mean age of ∼61 years, from a large multiracial sample, demonstrated significant deficits in processing speed decades after the index pregnancy, even when the results were adjusted for abnormal estimated glomerular filtration rate (eGFR) [229].

Cognitive and behavioural deficits associated with preeclampsia, and their relationship to fetal outcomes

Figure 3
Cognitive and behavioural deficits associated with preeclampsia, and their relationship to fetal outcomes

The ischaemic placenta releases a myriad of pathogenic factors that lead to endothelial dysfunction. The resulting pathophysiology, if left untreated, can develop into cerebrovascular abnormalities which include a loss of autoregulation, increase in BBB permeability, with a resulting imbalance in CSF electrolyte composition. Collectively, these insults to the CNS can manifest into learning and memory deficits that can persist for decades after the index pregnancy. Moreover, behavioural outcomes of depression, anxiety and PTSD are significantly associated with low fetal birth weight, IUGR and preterm birth.

Figure 3
Cognitive and behavioural deficits associated with preeclampsia, and their relationship to fetal outcomes

The ischaemic placenta releases a myriad of pathogenic factors that lead to endothelial dysfunction. The resulting pathophysiology, if left untreated, can develop into cerebrovascular abnormalities which include a loss of autoregulation, increase in BBB permeability, with a resulting imbalance in CSF electrolyte composition. Collectively, these insults to the CNS can manifest into learning and memory deficits that can persist for decades after the index pregnancy. Moreover, behavioural outcomes of depression, anxiety and PTSD are significantly associated with low fetal birth weight, IUGR and preterm birth.

The indices for depression [31,249,250] and anxiety [31,38,249] are elevated in PE, whereas the frequency of PTSD is increased for several years after the index pregnancy [3742]. One clinical study observed that the risk for postpartum depression was associated not to the severity of PE, but rather to its consequences (e.g. perinatal death), even after adjusting for the confounding variables of age, ethnicity and educational level of the mother [250]. Although resilience shielding against psychological stress [251] and psychotherapeutic treatment [252] can attenuate the duration of the episode, a previous history of depression coupled with experiencing a preeclamptic index pregnancy can significantly contribute to the onset of PTSD and exacerbate the anxiety of planning future pregnancies [39]. The deleterious effects of prenatal maternal psychosocial stressors on fetal development are well documented, where increased incidences of maternal depression [3436] and anxiety [3133] are significantly correlated to low fetal birth weight, IUGR and premature birth [3236,38].

CONCLUSION

First reported over a century ago [253], the ischaemic placenta was identified as the source of pathogenic factors that generate the clinical presentations of PE. Moreover, experiments performed in 1940 confirmed that delivery/removal of the ischaemic placenta results in full regression of the maternal syndrome [9,254]. Current research continues to focus on the ischaemic placenta by targeting the pathogenic factors that drive angiogenic imbalance [255], increases in ROS [256] and peripheral inflammation [257]. These approaches are based upon the recommendations of the 2013 Task Force on Hypertension in Pregnancy, which concluded that current FDA-approved antihypertensive therapies have no effect on the progression of PE, may further exacerbate placental ischaemia, and expose both the expectant mother and developing fetus to possible deleterious side effects [4].

To be sure, although PE is initiated at the maternal–placental interface, the poor patient outcomes are predominantly neurological and occur in the brain. As illustrated in Figure 1, the absence of the autonomically-regulated adaptations to pregnancy contributes to the development of potential life-threatening neuropathology, including increased BBB permeability and brain water content, the appearance of WMLs and the loss of cerebrovascular regulation. Finally, the poor outcomes of PE are manifested as executive dysfunction, cognitive impairment, depression, anxiety and PTSD. These behavioural outcomes are significantly associated with low fetal birth weight, IUGR and premature birth.

In parallel with the current ischaemic placental studies of PE pathophysiology, we have proposed that future studies of PE should address the neural control of blood pressure in animal models, and how known circulating factors (for example, anti-angiogenic proteins, AngII and inflammatory cytokines) influence activity of brainstem nuclei controlling blood pressure. The intent of these proposed studies is to identify mechanistic targets, and to direct therapeutic agents against these targets so as to reduce both the neurological outcomes and the number of fatal cases of PE.

FUNDING

G.L.B. and E.M.G. received partial salary support from NIH [grant number R01HL121527]. E.M.G. receives partial salary support from NIH [grant number R00HL116T14]. O.C.L. receives salary support from NIH [grant number T32HL105324].

Abbreviations

     
  • AGT

    angiotensinogen

  •  
  • AngII

    angiotensin II

  •  
  • AT1R

    angiotensin II Type 1 receptors

  •  
  • BBB

    blood brain barrier

  •  
  • BR

    baroreceptor

  •  
  • BRS

    baroreceptor reflex sensitivity

  •  
  • CBF

    cerebral blood flow

  •  
  • CO

    cardiac output

  •  
  • CPP

    cerebral perfusion pressure

  •  
  • CVLM

    caudal ventrolateral medulla

  •  
  • EEG

    electroencephalogram

  •  
  • HRV

    heart rate variability

  •  
  • IMLCC

    intermediolateral cell column

  •  
  • IUGR

    intrauterine growth restriction

  •  
  • MSNA

    muscle sympathetic nerve activity

  •  
  • NA

    nucleus ambiguous

  •  
  • NTS

    solitary tract nucleus

  •  
  • PE

    preeclampsia

  •  
  • PKA

    protein kinase A

  •  
  • PRR

    prorenin receptor

  •  
  • PRES

    posterior reversible encephalopathy syndrome

  •  
  • PTSD

    post-traumatic stress disorder

  •  
  • PVN

    paraventricular nucleus

  •  
  • PVR

    peripheral vascular resistance

  •  
  • RAAS

    renin–angiotensin–aldosterone systems

  •  
  • ROS

    reactive oxygen species

  •  
  • RVLM

    Rostral ventrolateral medulla

  •  
  • SHR

    spontaneously hypertensive rat

  •  
  • SON

    supraoptic nucleus

  •  
  • WML

    white matter lesion

References

References
1
Ananth
 
C.V.
Keyes
 
K.M.
Wapner
 
R.J.
 
Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis
BMJ
2013
, vol. 
347
 pg. 
f6564
 
[PubMed]
2
Abalos
 
E.
Cuesta
 
C.
Grosso
 
A.L.
Chou
 
D.
Say
 
L.
 
Global and regional estimates of preeclampsia and eclampsia: a systematic review
Eur. J. Obstet. Gynecol. Reprod. Biol.
2013
, vol. 
170
 (pg. 
1
-
7
)
[PubMed]
3
WHO
WHO Recommendations for Prevention and Treatment of Pre-Eclampsia and Eclampsia
2011
Geneva
World Health Organization
4
American College of Obstetricians, Gynecologists, Task Force on Hypertension in Pregnancy
Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy
Obstet. Gynecol.
2013
, vol. 
122
 (pg. 
1122
-
1131
)
[PubMed]
5
Zeeman
 
G.G.
 
Neurologic complications of pre-eclampsia
Semin. Perinatol.
2009
, vol. 
33
 (pg. 
166
-
172
)
[PubMed]
6
Isler
 
C.M.
Rinehart
 
B.K.
Terrone
 
D.A.
Martin
 
R.W.
Magann
 
E.F.
Martin
 
J.N.
 
Maternal mortality associated with HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome
Am. J. Obstet. Gynecol.
1999
, vol. 
181
 (pg. 
924
-
928
)
[PubMed]
7
Okanloma
 
K.A.
Moodley
 
J.
 
Neurological complications associated with the pre-eclampsia/eclampsia syndrome
Int. J. Gynaecol. Obstet.
2000
, vol. 
71
 (pg. 
223
-
225
)
[PubMed]
8
Al-Jameil
 
N.
Aziz Khan
 
F.
Fareed Khan
 
M.
Tabassum
 
H.
 
A brief overview of preeclampsia
J. Clin. Med. Res.
2014
, vol. 
6
 (pg. 
1
-
7
)
[PubMed]
9
Chaiworapongsa
 
T.
Chaemsaithong
 
P.
Yeo
 
L.
Romero
 
R.
 
Pre-eclampsia part 1: current understanding of its pathophysiology
Nat. Rev. Nephrol.
2014
, vol. 
10
 (pg. 
466
-
480
)
[PubMed]
10
Brown
 
M.A.
Gallery
 
E.D.
 
Volume homeostasis in normal pregnancy and pre-eclampsia: physiology and clinical implications
Bailliere's Clin. Obstet. Gynaecol.
1994
, vol. 
8
 (pg. 
287
-
310
)
11
Eneroth-Grimfors
 
E.
Westgren
 
M.
Ericson
 
M.
Ihrman-Sandahl
 
C.
Lindblad
 
L.E.
 
Autonomic cardiovascular control in normal and pre-eclamptic pregnancy
Acta Obstet. Gynecol. Scand.
1994
, vol. 
73
 (pg. 
680
-
684
)
[PubMed]
12
Melchiorre
 
K.
Sharma
 
R.
Thilaganathan
 
B.
 
Cardiovascular implications in preeclampsia: an overview
Circulation
2014
, vol. 
130
 (pg. 
703
-
714
)
[PubMed]
13
Melchiorre
 
K.
Thilaganathan
 
B.
 
Maternal cardiac function in preeclampsia
Curr. Opin. Obstet. Gynecol.
2011
, vol. 
23
 (pg. 
440
-
447
)
[PubMed]
14
Voss
 
A.
Baumert
 
M.
Baier
 
V.
Stepan
 
H.
Walther
 
T.
Faber
 
R.
 
Autonomic cardiovascular control in pregnancies with abnormal uterine perfusion
Am. J. Hypertens.
2006
, vol. 
19
 (pg. 
306
-
312
)
[PubMed]
15
Matsuo
 
H.
Inoue
 
K.
Hapsari
 
E.D.
Kitano
 
K.
Shiotani
 
H.
 
Change of autonomic nervous activity during pregnancy and its modulation of labor assessed by spectral heart rate variability analysis
Clin. Exp. Obstet. Gynecol.
2007
, vol. 
34
 (pg. 
73
-
79
)
[PubMed]
16
Kuo
 
C.D.
Chen
 
G.Y.
Yang
 
M.J.
Lo
 
H.M.
Tsai
 
Y.S.
 
Biphasic changes in autonomic nervous activity during pregnancy
Br. J. Anaesth.
2000
, vol. 
84
 (pg. 
323
-
329
)
[PubMed]
17
Schobel
 
H.P.
Fischer
 
T.
Heuszer
 
K.
Geiger
 
H.
Schmieder
 
R.E.
 
Preeclampsia–a state of sympathetic overactivity
N. Engl. J. Med.
1996
, vol. 
335
 (pg. 
1480
-
1485
)
[PubMed]
18
Tanrikulu
 
L.
Naraghi
 
R.
Ernst
 
V.
Voigt
 
F.
Hastreiter
 
P.
Doerfler
 
A.
Buchfeldera
 
M.
Beckmannf
 
M.
Goecke
 
T.W.
 
Neurovascular compression of medulla oblongata–association for gestation-induced hypertension
Med. Hypotheses
2015
, vol. 
84
 (pg. 
605
-
610
)
19
Hines
 
T.
Beauchamp
 
D.
Rice
 
C.
 
Baroreflex control of sympathetic nerve activity in hypertensive pregnant rats with reduced uterine perfusion
Hypertens. Pregnancy
2007
, vol. 
26
 (pg. 
303
-
314
)
[PubMed]
20
Silver
 
H.M.
Tahvanainen
 
K.U.
Kuusela
 
T.A.
Eckberg
 
D.L.
 
Comparison of vagal baroreflex function in nonpregnant women and in women with normal pregnancy, preeclampsia, or gestational hypertension
Am. J. Obstet. Gynecol.
2001
, vol. 
184
 (pg. 
1189
-
1195
)
[PubMed]
21
Walther
 
T.
Wessel
 
N.
Malberg
 
H.
Voss
 
A.
Stepan
 
H.
Faber
 
R.
 
A combined technique for predicting pre-eclampsia: concurrent measurement of uterine perfusion and analysis of heart rate and blood pressure variability
J. Hypertens.
2006
, vol. 
24
 (pg. 
747
-
750
)
[PubMed]
22
Aukes
 
A.M.
de Groot
 
J.C.
Aarnoudse
 
J.G.
Zeeman
 
G.G.
 
Brain lesions several years after eclampsia
Am. J. Obstet. Gynecol.
2009
, vol. 
200
 (pg. 
e1
-
e5
)
[PubMed]
23
Aukes
 
A.M.
De Groot
 
J.C.
Wiegman
 
M.J.
Aarnoudse
 
J.G.
Sanwikarja
 
G.S.
Zeeman
 
G.G.
 
Long-term cerebral imaging after pre-eclampsia
BJOG
2012
, vol. 
119
 (pg. 
1117
-
1122
)
[PubMed]
24
Wiegman
 
M.J.
Zeeman
 
G.G.
Aukes
 
A.M.
Bolte
 
A.C.
Faas
 
M.M.
Aarnoudse
 
J.G.
Groot
 
J.C.
 
Regional distribution of cerebral white matter lesions years after preeclampsia and eclampsia
Obstet. Gynecol.
2014
, vol. 
123
 (pg. 
790
-
795
)
[PubMed]
25
Junewar
 
V.
Verma
 
R.
Sankhwar
 
P.L.
Garg
 
R.K.
Singh
 
M.K.
Malhotra
 
H.S.
Sharma
 
P.K.
Parihar
 
A.
 
Neuroimaging features and predictors of outcome in eclamptic encephalopathy: a prospective observational study
Am. J. Neuroradiol.
2014
, vol. 
35
 (pg. 
1728
-
1734
)
26
Zeeman
 
G.G.
Fleckenstein
 
J.L.
Twickler
 
D.M.
Cunningham
 
F.G.
 
Cerebral infarction in eclampsia
Am. J. Obstet. Gynecol.
2004
, vol. 
190
 (pg. 
714
-
720
)
[PubMed]
27
Zeeman
 
G.G.
Hatab
 
M.R.
Twickler
 
D.M.
 
Increased cerebral blood flow in preeclampsia with magnetic resonance imaging
Am. J. Obstet. Gynecol.
2004
, vol. 
191
 (pg. 
1425
-
1429
)
[PubMed]
28
Postma
 
I.R.
Bouma
 
A.
Ankersmit
 
I.F.
Zeeman
 
G.G.
 
Neurocognitive functioning following preeclampsia and eclampsia: a long-term follow-up study
Am. J. Obstet. Gynecol.
2014
, vol. 
211
 (pg. 
e1
-
e9
)
29
Brussé
 
I.
Duvekot
 
J.
Jongerling
 
J.
Steegers
 
E.
De Koning
 
I.
 
Impaired maternal cognitive functioning after pregnancies complicated by severe pre-eclampsia: a pilot case-control study
Acta Obstet. Gynecol. Scand.
2008
, vol. 
87
 (pg. 
408
-
412
)
[PubMed]
30
Postma
 
I.R.
Groen
 
H.
Easterling
 
T.R.
Tsigas
 
E.Z.
Wilson
 
M.L.
Porcel
 
J.
Zeeman
 
G.G.
 
The brain study: cognition, quality of life and social functioning following preeclampsia; an observational study
Pregnancy Hypertens.
2013
, vol. 
3
 (pg. 
227
-
234
)
[PubMed]
31
Abedian
 
Z.
Soltani
 
N.
Mokhber
 
N.
Esmaily
 
H.
 
Depression and anxiety in pregnancy and postpartum in women with mild and severe preeclampsia
Iran. J. Nurs. Midwifery Res.
2015
, vol. 
20
 (pg. 
454
-
459
)
[PubMed]
32
Paarlberg
 
K.M.
Vingerhoets
 
A.J.
Passchier
 
J.
Dekker
 
G.A.
Heinen
 
A.G.
van Geijn
 
H.P.
 
Psychosocial predictors of low birthweight: a prospective study
Br. J. Obstet. Gynaecol.
1999
, vol. 
106
 (pg. 
834
-
841
)
[PubMed]
33
Wainstock
 
T.
Anteby
 
E.
Glasser
 
S.
Shoham-Vardi
 
I.
Lerner-Geva
 
L.
 
The association between prenatal maternal objective stress, perceived stress, preterm birth and low birthweight
J. Matern. Fetal Neonatal Med.
2013
, vol. 
26
 (pg. 
973
-
977
)
[PubMed]
34
Ciesielski
 
T.H.
Marsit
 
C.J.
Williams
 
S.M.
 
Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth
BMC Pregnancy Childbirth
2015
, vol. 
15
 pg. 
192
 
[PubMed]
35
Huang
 
H.
Coleman
 
S.
Bridge
 
J.A.
Yonkers
 
K.
Katon
 
W.
 
A meta-analysis of the relationship between antidepressant use in pregnancy and the risk of preterm birth and low birth weight
Gen. Hosp. Psychiatry
2014
, vol. 
36
 (pg. 
13
-
18
)
[PubMed]
36
Uguz
 
F.
Gezginc
 
K.
Yazici
 
F.
 
Are major depression and generalized anxiety disorder associated with intrauterine growth restriction in pregnant women? A case-control study
Gen. Hosp. Psychiatry
2011
, vol. 
33
 (pg. 
e7
-
e9
)
[PubMed]
37
Tan
 
P.
Evsen
 
M.S.
Soydinc
 
H.E.
Sak
 
M.E.
Ozler
 
A.
Turgut
 
A.
Bez
 
Y.
Gül
 
T.
 
Increased psychological trauma and decreased desire to have children after a complicated pregnancy
J. Turk. Ger. Gynecol. Assoc.
2013
, vol. 
14
 (pg. 
11
-
14
)
[PubMed]
38
Gaugler-Senden
 
I.P.
Duivenvoorden
 
H.J.
Filius
 
A.
De Groot
 
C.J.
Steegers
 
E.A.
Passchier
 
J.
 
Maternal psychosocial outcome after early onset preeclampsia and preterm birth
J. Matern. Fetal Neonatal Med.
2012
, vol. 
25
 (pg. 
272
-
276
)
[PubMed]
39
Stramrood
 
C.A.
Wessel
 
I.
Doornbos
 
B.
Aarnoudse
 
J.G.
van den Berg
 
P.P.
Schultz
 
W.C.
van Pampus
 
M.G.
 
Posttraumatic stress disorder following preeclampsia and PPROM: a prospective study with 15 months follow-up
Reprod. Sci.
2011
, vol. 
18
 (pg. 
645
-
653
)
[PubMed]
40
Hoedjes
 
M.
Berks
 
D.
Vogel
 
I.
Franx
 
A.
Visser
 
W.
Duvekot
 
J.J.
Habbema
 
J.D.
Steegers
 
E.A.
Raat
 
H.
 
Symptoms of post-traumatic stress after preeclampsia
J. Psychosom. Obstet. Gynaecol.
2011
, vol. 
32
 (pg. 
126
-
134
)
[PubMed]
41
van Pampus
 
M.G.
Wolf
 
H.
Weijmar Schultz
 
W.C.
Neeleman
 
J.
Aarnoudse
 
J.G.
 
Posttraumatic stress disorder following preeclampsia and HELLP syndrome
J Psychosom. Obstet. Gynaecol.
2004
, vol. 
25
 (pg. 
183
-
187
)
[PubMed]
42
Engelhard
 
I.M.
van Rij
 
M.
Boullart
 
I.
Ekhart
 
T.H.
Spaanderman
 
M.E.
van den Hout
 
M.A.
Peeters
 
L.L.
 
Posttraumatic stress disorder after pre-eclampsia: an exploratory study
Gen. Hosp. Psychiatry
2002
, vol. 
24
 (pg. 
260
-
264
)
[PubMed]
43
Chesley
 
L.C.
 
Plasma and red cell volumes during pregnancy
Am. J. Obstet. Gynecol.
1972
, vol. 
112
 (pg. 
440
-
450
)
[PubMed]
44
Brunton
 
P.J.
Arunachalam
 
S.
Russel
 
J.A.
 
Control of neurohypophysial hormone secretion, blood osmolality and volume in pregnancy
J. Physiol. Pharmacol.
2008
, vol. 
59
 
Suppl 8
(pg. 
27
-
45
)
[PubMed]
45
Bateman
 
B.T.
Berman
 
M.F.
Riley
 
L.E.
Leffert
 
L.R.
 
The epidemiology of postpartum hemorrhage in a large, nationwide sample of deliveries
Anesth. Analg.
2010
, vol. 
110
 (pg. 
1368
-
1373
)
[PubMed]
46
Cheung
 
K.L.
Lafayette
 
R.A.
 
Renal physiology of pregnancy
Adv. Chronic Kidney Dis.
2013
, vol. 
20
 (pg. 
209
-
214
)
[PubMed]
47
Sunn
 
N.
Egli
 
M.
Burazin
 
T.C.
Burns
 
P.
Colvill
 
L.
Davern
 
P.
Denton
 
D.A.
Oldfield
 
B.J.
Weisinger
 
R.S.
Rauch
 
M.
, et al 
Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat
Proc. Natl. Acad. Sci. U.S.A.
2002
, vol. 
99
 (pg. 
1701
-
1706
)
[PubMed]
48
McKinley
 
M.J.
Mathai
 
M.L.
McAllen
 
R.M.
McClear
 
R.C.
Miselis
 
R.R.
Pennington
 
G.L.
Vivas
 
L.
Wade
 
J.D.
Oldfield
 
B.J.
 
Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis
J. Neuroendocrinol.
2004
, vol. 
16
 (pg. 
340
-
347
)
[PubMed]
49
Atherton
 
J.C.
Dark
 
J.M.
Garland
 
H.O.
Morgan
 
M.R.
Pidgeon
 
J.
Soni
 
S.
 
Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat
J. Physiol.
1982
, vol. 
330
 (pg. 
81
-
93
)
[PubMed]
50
Barrett
 
K.E.
Barman
 
S.M.
Boitano
 
S.
Brooks
 
H.L.
 
Barrett
 
K.E.
Barman
 
S.M.
Boitano
 
S.
Brooks
 
H.L.
 
Hypothalamic regulation of hormonal functions
Ganong's Review of Medical Physiology
25th edn
New York, NY
McGraw-Hill
51
Durr
 
J.A.
Stamoutsos
 
B.
Lindheimer
 
M.D.
 
Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation
J. Clin. Invest.
1981
, vol. 
68
 (pg. 
337
-
346
)
[PubMed]
52
Manning
 
M.
Stoev
 
S.
Chini
 
B.
Durroux
 
T.
Mouillac
 
B.
Guillon
 
G.
 
Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents
Prog. Brain Res.
2008
, vol. 
170
 (pg. 
473
-
512
)
[PubMed]
53
Pritchard
 
J.A.
 
Changes in the blood volume during pregnancy and delivery
Anesthesiology
1965
, vol. 
26
 (pg. 
393
-
399
)
[PubMed]
54
Rosso
 
P.
Donoso
 
E.
Braun
 
S.
Espinoza
 
R.
Fernandez
 
C.
Salas
 
S.P.
 
Maternal hemodynamic adjustments in idiopathic fetal growth retardation
Gynecol. Obstet. Invest.
1993
, vol. 
35
 (pg. 
162
-
165
)
[PubMed]
55
Salas
 
S.P.
Rosso
 
P.
Espinoza
 
R.
Robert
 
J.A.
Valdes
 
G.
Donoso
 
E.
 
Maternal plasma volume expansion and hormonal changes in women with idiopathic fetal growth retardation
Obstet. Gynecol.
1993
, vol. 
81
 (pg. 
1029
-
1033
)
[PubMed]
56
Ouzounian
 
J.G.
Elkayam
 
U.
 
Physiologic changes during normal pregnancy and delivery
Cardiol. Clin.
2012
, vol. 
30
 (pg. 
317
-
329
)
[PubMed]
57
Tan
 
E.K.
Tan
 
E.L.
 
Alterations in physiology and anatomy during pregnancy
Best Pract. Res. Clin. Obstet. Gynaecol.
2013
, vol. 
27
 (pg. 
791
-
802
)
[PubMed]
58
Gordan
 
R.
Gwathmey
 
J.K.
Xie
 
L.H.
 
Autonomic and endocrine control of cardiovascular function
World J. Cardiol.
2015
, vol. 
7
 (pg. 
204
-
214
)
[PubMed]
59
Haines
 
D.E.
 
Haines
 
D.E.
 
Fundamental Neuroscience for Basic and Clinical Applications
2013
4th edn
Philadelphia, PA
Saunders
pg. 
504
 
60
Thomas
 
G.D.
 
Neural control of the circulation
Adv. Physiol. Educ.
2011
, vol. 
35
 (pg. 
28
-
32
)
[PubMed]
61
Hall
 
J.E.
Guyton
 
A.C.
 
Guyton and Hall Textbook of Medical Physiology
2011
12th edn
Philadelphia, PA
Saunders
pg. 
1120
 
62
Guyenet
 
P.G.
 
The sympathetic control of blood pressure
Nat. Rev. Neurosci.
2006
, vol. 
7
 (pg. 
335
-
346
)
[PubMed]
63
DiFrancesco
 
D.
Tortora
 
P.
 
Direct activation of cardiac pacemaker channels by intracellular cyclic AMP
Nature
1991
, vol. 
351
 (pg. 
145
-
147
)
[PubMed]
64
Guimaraes
 
S.
Moura
 
D.
 
Vascular adrenoceptors: an update
Pharmacol. Rev.
2001
, vol. 
53
 (pg. 
319
-
356
)
[PubMed]
65
Robson
 
S.C.
Hunter
 
S.
Boys
 
R.J.
Dunlop
 
W.
 
Serial study of factors influencing changes in cardiac output during human pregnancy
Am. J. Physiol.
1989
, vol. 
256
 
4 Pt 2
(pg. 
H1060
-
H1065
)
[PubMed]
66
Sanghavi
 
M.
Rutherford
 
J.D.
 
Cardiovascular physiology of pregnancy
Circulation
2014
, vol. 
130
 (pg. 
1003
-
1008
)
[PubMed]
67
Bamfo
 
J.E.
Kametas
 
N.A.
Chambers
 
J.B.
Nicolaides
 
K.H.
 
Maternal cardiac function in normotensive and pre-eclamptic intrauterine growth restriction
Ultrasound Obstet. Gynecol.
2008
, vol. 
32
 (pg. 
682
-
686
)
[PubMed]
68
Capeless
 
E.L.
Clapp
 
J.F.
 
Cardiovascular changes in early phase of pregnancy
Am. J. Obstet. Gynecol.
1989
, vol. 
161
 
6 Pt 1
(pg. 
1449
-
1453
)
[PubMed]
69
Easterling
 
T.R.
Carlson
 
K.L.
Schmucker
 
B.C.
Brateng
 
D.A.
Benedetti
 
T.J.
 
Measurement of cardiac output in pregnancy by Doppler technique
Am. J. Perinatol.
1990
, vol. 
7
 (pg. 
220
-
222
)
[PubMed]
70
Mabie
 
W.C.
DiSessa
 
T.G.
Crocker
 
L.G.
Sibai
 
B.M.
Arheart
 
K.L.
 
A longitudinal study of cardiac output in normal human pregnancy
Am. J. Obstet. Gynecol.
1994
, vol. 
170
 (pg. 
849
-
856
)
[PubMed]
71
Kazerooni
 
T.
Khosropananh
 
S.
 
Second trimester cardiac output and its predictive value for preeclampsia
Saudi Med. J.
2006
, vol. 
27
 (pg. 
1526
-
1529
)
[PubMed]
72
Bosio
 
P.M.
McKenna
 
P.J.
Conroy
 
R.
O'Herlihy
 
C.
 
Maternal central hemodynamics in hypertensive disorders of pregnancy
Obstet. Gynecol.
1999
, vol. 
94
 (pg. 
978
-
984
)
[PubMed]
73
De Paco
 
C.
Kametas
 
N.
Rencoret
 
G.
Strobl
 
I.
Nicolaides
 
K.H.
 
Maternal cardiac output between 11 and 13 weeks of gestation in the prediction of preeclampsia and small for gestational age
Obstet. Gynecol.
2008
, vol. 
111
 
2 Pt 1
(pg. 
292
-
300
)
[PubMed]
74
Melchiorre
 
K.
Sutherland
 
G.R.
Baltabaeva
 
A.
Liberati
 
M.
Thilaganathan
 
B.
 
Maternal cardiac dysfunction and remodeling in women with preeclampsia at term
Hypertension
2011
, vol. 
57
 (pg. 
85
-
93
)
[PubMed]
75
Melchiorre
 
K.
Sutherland
 
G.R.
Watt-Coote
 
I.
Liberati
 
M.
Thilaganathan
 
B.
 
Severe myocardial impairment and chamber dysfunction in preterm preeclampsia
Hypertens. Pregnancy
2012
, vol. 
31
 (pg. 
454
-
471
)
[PubMed]
76
Carbillon
 
L.
Uzan
 
M.
Uzan
 
S.
 
Pregnancy, vascular tone, and maternal hemodynamics: a crucial adaptation
Obstet. Gynecol. Surv.
2000
, vol. 
55
 (pg. 
574
-
581
)
[PubMed]
77
Easterling
 
T.R.
Benedetti
 
T.J.
Schmucker
 
B.C.
Millard
 
S.P.
 
Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study
Obstet. Gynecol.
1990
, vol. 
76
 (pg. 
1061
-
1069
)
[PubMed]
78
Allen
 
R.
Castro
 
L.
Arora
 
C.
Krakow
 
D.
Huang
 
S.
Platt
 
L.
 
Endothelium-derived relaxing factor inhibition and the pressor response to norepinephrine in the pregnant rat
Obstet. Gynecol.
1994
, vol. 
83
 (pg. 
92
-
96
)
[PubMed]
79
Brown
 
G.P.
Venuto
 
R.C.
 
Angiotensin II receptor alterations during pregnancy in rabbits
Am J. Physiol.
1986
, vol. 
251
 
1 Pt 1
(pg. 
E58
-
E64
)
[PubMed]
80
Paller
 
M.S.
 
Mechanism of decreased pressor responsiveness to ANG II, NE, and vasopressin in pregnant rats
Am. J. Physiol.
1984
, vol. 
247
 
1 Pt 2
(pg. 
H100
-
H108
)
[PubMed]
81
Ylikorkala
 
O.
Makila
 
U.M.
 
Prostacyclin and thromboxane in gynecology and obstetrics
Am. J. Obstet. Gynecol.
1985
, vol. 
152
 (pg. 
318
-
329
)
[PubMed]
82
Dschietzig
 
T.
Bartsch
 
C.
Richter
 
C.
Laule
 
M.
Baumann
 
G.
Stangl
 
K.
 
Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB
Circ. Res.
2003
, vol. 
92
 (pg. 
32
-
40
)
[PubMed]
83
Lanni
 
S.M.
Tillinghast
 
J.
Silver
 
H.M.
 
Hemodynamic changes and baroreflex gain in the supine hypotensive syndrome
Am. J. Obstet. Gynecol.
2002
, vol. 
187
 (pg. 
1636
-
1641
)
[PubMed]
84
McGuane
 
J.T.
Debrah
 
J.E.
Debrah
 
D.O.
Rubin
 
J.P.
Segal
 
M.
Shroff
 
S.G.
Conrad
 
K.P.
 
Role of relaxin in maternal systemic and renal vascular adaptations during gestation
Ann. N. Y. Acad. Sci.
2009
, vol. 
1160
 (pg. 
304
-
312
)
[PubMed]
85
Duvekot
 
J.J.
Cheriex
 
E.C.
Pieters
 
F.A.
Menheere
 
P.P.
Peeters
 
L.H.
 
Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone
Am. J. Obstet. Gynecol.
1993
, vol. 
169
 (pg. 
1382
-
1392
)
[PubMed]
86
Gilson
 
G.J.
Samaan
 
S.
Crawford
 
M.H.
Qualls
 
C.R.
Curet
 
L.B.
 
Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: a longitudinal study
Obstet. Gynecol.
1997
, vol. 
89
 (pg. 
957
-
962
)
[PubMed]
87
Clark
 
S.L.
Cotton
 
D.B.
Lee
 
W.
Bishop
 
C.
Hill
 
T.
Southwick
 
J.
Pivarnik
 
J.
Spillman
 
T.
DeVore
 
G.R.
Phelan
 
J.
, et al 
Central hemodynamic assessment of normal term pregnancy
Am. J. Obstet. Gynecol.
1989
, vol. 
161
 
6 Pt 1
(pg. 
1439
-
1442
)
[PubMed]
88
Anggard
 
E.
 
Nitric oxide: mediator, murderer, and medicine
Lancet
1994
, vol. 
343
 (pg. 
1199
-
1206
)
[PubMed]
89
Podjarny
 
E.
Mandelbaum
 
A.
Bernheim
 
J.
 
Does nitric oxide play a role in normal pregnancy and pregnancy-induced hypertension?
Nephrol. Dial. Transplant.
1994
, vol. 
9
 (pg. 
1527
-
1529
)
90
Holden
 
D.P.
Fickling
 
S.A.
Whitley
 
G.S.
Nussey
 
S.S.
 
Plasma concentrations of asymmetric dimethylarginine, a natural inhibitor of nitric oxide synthase, in normal pregnancy and preeclampsia
Am. J. Obstet. Gynecol.
1998
, vol. 
178
 (pg. 
551
-
556
)
[PubMed]
91
Merrill
 
D.C.
Karoly
 
M.
Chen
 
K.
Ferrario
 
C.M.
Brosnihan
 
K.B.
 
Angiotensin-(1–7) in normal and preeclamptic pregnancy
Endocrine
2002
, vol. 
18
 (pg. 
239
-
245
)
[PubMed]
92
Novak
 
J.
Reckelhoff
 
J.
Bumgarner
 
L.
Cockrell
 
K.
Kassab
 
S.
Granger
 
J.P.
 
Reduced sensitivity of the renal circulation to angiotensin II in pregnant rats
Hypertension
1997
, vol. 
30
 
3 Pt 2
(pg. 
580
-
584
)
[PubMed]
93
Hladunewich
 
M.
Karumanchi
 
S.A.
Lafayette
 
R.
 
Pathophysiology of the clinical manifestations of preeclampsia
Clin. J. Am. Soc. Nephrol.
2007
, vol. 
2
 (pg. 
543
-
549
)
[PubMed]
94
LaMarca
 
B.
Parrish
 
M.
Ray
 
L.F.
Murphy
 
S.R.
Roberts
 
L.
Glover
 
P.
Wallukat
 
G.
Wenzel
 
K.
Cockrell
 
K.
Martin
 
J.N.
, et al 
Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1
Hypertension
2009
, vol. 
54
 (pg. 
905
-
909
)
[PubMed]
95
Herse
 
F.
Verlohren
 
S.
Wenzel
 
K.
Pape
 
J.
Muller
 
D.N.
Modrow
 
S.
Wallukat
 
G.
Luft
 
F.C.
Redman
 
C.W.
Dechend
 
R.
 
Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study
Hypertension
2009
, vol. 
53
 (pg. 
393
-
398
)
[PubMed]
96
Bobst
 
S.M.
Day
 
M.C.
Gilstrap
 
L.C.
Xia
 
Y.
Kellems
 
R.E.
 
Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-1 secretion
Am. J. Hypertens.
2005
, vol. 
18
 (pg. 
330
-
336
)
[PubMed]
97
Thway
 
T.M.
Shlykov
 
S.G.
Day
 
M.C.
Sanborn
 
B.M.
Gilstrap
 
L.C.
Xia
 
Y.
Kellems
 
R.E.
 
Antibodies from preeclamptic patients stimulate increased intracellular Ca2+ mobilization through angiotensin receptor activation
Circulation
2004
, vol. 
110
 (pg. 
1612
-
1619
)
[PubMed]
98
Wallukat
 
G.
Neichel
 
D.
Nissen
 
E.
Homuth
 
V.
Luft
 
F.C.
 
Agonistic autoantibodies directed against the angiotensin II AT1 receptor in patients with preeclampsia
Can. J. Physiol. Pharmacol.
2003
, vol. 
81
 (pg. 
79
-
83
)
[PubMed]
99
Dechend
 
R.
Viedt
 
C.
Muller
 
D.N.
Ugele
 
B.
Brandes
 
R.P.
Wallukat
 
G.
Park
 
J.K.
Janke
 
J.
Barta
 
P.
Theuer
 
J.
, et al 
AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase
Circulation
2003
, vol. 
107
 (pg. 
1632
-
1639
)
[PubMed]
100
Xia
 
Y.
Kellems
 
R.E.
 
Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond
Circ. Res.
2013
, vol. 
113
 (pg. 
78
-
87
)
[PubMed]
101
Xia
 
Y.
Wen
 
H.
Bobst
 
S.
Day
 
M.C.
Kellems
 
R.E.
 
Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells
J. Soc. Gynecol. Investig.
2003
, vol. 
10
 (pg. 
82
-
93
)
[PubMed]
102
Kobayashi
 
Y.
Yamamoto
 
T.
Chishima
 
F.
Takahashi
 
H.
Suzuki
 
M.
 
Autoantibodies isolated from patients with preeclampsia induce soluble endoglin production from trophoblast cells via interactions with angiotensin II type 1 receptor
Am. J. Reprod. Immunol.
2015
, vol. 
73
 (pg. 
285
-
291
)
[PubMed]
103
Siddiqui
 
A.H.
Irani
 
R.A.
Blackwell
 
S.C.
Ramin
 
S.M.
Kellems
 
R.E.
Xia
 
Y.
 
Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: correlation with disease severity
Hypertension
2010
, vol. 
55
 (pg. 
386
-
393
)
[PubMed]
104
Velloso
 
E.P.
Pimentel
 
R.L.
Braga
 
J.F.
Cabral
 
A.C.
Reis
 
Z.S.
Bader
 
M.
Santos
 
R.A.
Wallukat
 
G.
 
Identification of a novel agonist-like autoantibody in preeclamptic patients
Am. J. Hypertens.
2016
, vol. 
29
 (pg. 
405
-
412
)
[PubMed]
105
AbdAlla
 
S.
Abdel-Baset
 
A.
Lother
 
H.
el Massiery
 
A.
Quitterer
 
U.
 
Mesangial AT1/B2 receptor heterodimers contribute to angiotensin II hyperresponsiveness in experimental hypertension
J. Mol. Neurosci.
2005
, vol. 
26
 (pg. 
185
-
192
)
[PubMed]
106
AbdAlla
 
S.
Lother
 
H.
el Massiery
 
A.
Quitterer
 
U.
 
Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness
Nat. Med.
2001
, vol. 
7
 (pg. 
1003
-
1009
)
[PubMed]
107
Quitterer
 
U.
AbdAlla
 
S.
 
Vasopressor meets vasodepressor: the AT1-B2 receptor heterodimer
Biochem. Pharmacol.
2014
, vol. 
88
 (pg. 
284
-
290
)
[PubMed]
108
Dennis
 
A.T.
 
Transthoracic echocardiography in women with preeclampsia
Curr. Opin. Anaesthesiol.
2015
, vol. 
28
 (pg. 
254
-
260
)
[PubMed]
109
Mahendru
 
A.A.
Everett
 
T.R.
Wilkinson
 
I.B.
Lees
 
C.C.
McEniery
 
C.M.
 
A longitudinal study of maternal cardiovascular function from preconception to the postpartum period
J. Hypertens.
2014
, vol. 
32
 (pg. 
849
-
856
)
[PubMed]
110
August
 
P.
Lenz
 
T.
Ales
 
K.L.
Druzin
 
M.L.
Edersheim
 
T.G.
Hutson
 
J.M.
Müller
 
F.B.
Laragh
 
J.H.
Sealey
 
J.E.
 
Longitudinal study of the renin-angiotensin-aldosterone system in hypertensive pregnant women: deviations related to the development of superimposed preeclampsia
Am. J. Obstet. Gynecol.
1990
, vol. 
163
 
5 Pt 1
(pg. 
1612
-
1621
)
[PubMed]
111
Chesley
 
L.C.
Talledo
 
E.
Bohler
 
C.S.
Zuspan
 
F.P.
 
Vascular reactivity to angiotensin II and norepinephrine in pregnant women
Am. J. Obstet. Gynecol.
1965
, vol. 
91
 (pg. 
837
-
842
)
[PubMed]
112
Kobori
 
H.
Nangaku
 
M.
Navar
 
L.G.
Nishiyama
 
A.
 
The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease
Pharmacol. Rev.
2007
, vol. 
59
 (pg. 
251
-
287
)
[PubMed]
113
Kobori
 
H.
Nishiyama
 
A.
Harrison-Bernard
 
L.M.
Navar
 
L.G.
 
Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension
Hypertension
2003
, vol. 
41
 (pg. 
42
-
49
)
[PubMed]
114
Anton
 
L.
Merrill
 
D.C.
Neves
 
L.A.
Diz
 
D.I.
Corthorn
 
J.
Valdes
 
G.
Stovall
 
K.
Gallagher
 
P.E.
Moorefield
 
C.
Gruver
 
C.
Brosnihan
 
K.B.
 
The uterine placental bed renin-angiotensin system in normal and preeclamptic pregnancy
Endocrinology
2009
, vol. 
150
 (pg. 
4316
-
4325
)
[PubMed]
115
Anton
 
L.
Merrill
 
D.C.
Neves
 
L.A.
Stovall
 
K.
Gallagher
 
P.E.
Diz
 
D.I.
Moorefield
 
C.
Gruver
 
C.
Ferrario
 
C.M.
Brosnihan
 
K.B.
 
Activation of local chorionic villi angiotensin II levels but not angiotensin (1–7) in preeclampsia
Hypertension
2008
, vol. 
51
 (pg. 
1066
-
1072
)
[PubMed]
116
Delforce
 
S.J.
Wang
 
Y.
Van-Aalst
 
M.E.
Corbisier de Meaultsart
 
C.
Morris
 
B.J.
Broughton-Pipkin
 
F.
Roberts
 
C.T.
Lumbers
 
E.R.
Pringle
 
K.G.
 
Effect of oxygen on the expression of renin-angiotensin system components in a human trophoblast cell line
Placenta
2016
, vol. 
37
 (pg. 
1
-
6
)
[PubMed]
117
Kurlak
 
L.O.
Mistry
 
H.D.
Cindrova-Davies
 
T.
Burton
 
G.J.
Broughton Pipkin
 
F.
 
Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult
J. Physiol.
2016
, vol. 
594
 (pg. 
1327
-
1340
)
[PubMed]
118
Marques
 
F.Z.
Pringle
 
K.G.
Conquest
 
A.
Hirst
 
J.J.
Markus
 
M.A.
Sarris
 
M.
Zakar
 
T.
Morris
 
B.J.
Lumbers
 
E.R.
 
Molecular characterization of renin-angiotensin system components in human intrauterine tissues and fetal membranes from vaginal delivery and cesarean section
Placenta
2011
, vol. 
32
 (pg. 
214
-
221
)
[PubMed]
119
Mistry
 
H.D.
Kurlak
 
L.O.
Broughton Pipkin
 
F.
 
The placental renin-angiotensin system and oxidative stress in pre-eclampsia
Placenta
2013
, vol. 
34
 (pg. 
182
-
186
)
[PubMed]
120
Nartita
 
T.
Ichihara
 
A.
Matsuoka
 
K.
Takai
 
Y.
Bokuda
 
K.
Morimoto
 
S.
Itoh
 
H.
Seki
 
H.
 
Placental (pro)renin receptor expression and plasma soluble (pro)renin receptor levels in preeclampsia
Placenta
2016
, vol. 
37
 (pg. 
72
-
78
)
[PubMed]
121
Pringle
 
K.G.
Tadros
 
M.A.
Callister
 
R.J.
Lumbers
 
E.R.
 
The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis?
Placenta
2011
, vol. 
32
 (pg. 
956
-
962
)
[PubMed]
122
Pringle
 
K.G.
Zakar
 
T.
Yates
 
D.
Mitchell
 
C.M.
Hirst
 
J.J.
Lumbers
 
E.R.
 
Molecular evidence of a (pro)renin/(pro)renin receptor system in human intrauterine tissues in pregnancy and its association with PGHS-2
J. Renin Angiotensin Aldosterone Syst.
2011
, vol. 
12
 (pg. 
304
-
310
)
[PubMed]
123
Shaw
 
K.J.
Do
 
Y.S.
Kjos
 
S.
Anderson
 
P.W.
Shinagawa
 
T.
Dubeau
 
L.
Hsueh
 
W.A.
 
Human decidua is a major source of renin
J. Clin. Invest.
1989
, vol. 
83
 (pg. 
2085
-
2092
)
[PubMed]
124
Shibata
 
E.
Powers
 
R.W.
Rajakumar
 
A.
von Versen-Hoynck
 
F.
Gallaher
 
M.J.
Lykins
 
D.L.
Roberts
 
J.M.
Hubel
 
C.A.
 
Angiotensin II decreases system A amino acid transporter activity in human placental villous fragments through AT1 receptor activation
Am. J. Physiol Endocrinol. Metab.
2006
, vol. 
291
 (pg. 
E1009
-
E1016
)
[PubMed]
125
Sykes
 
S.D.
Mitchell
 
C.
Pringle
 
K.G.
Wang
 
Y.
Zakar
 
T.
Lumbers
 
E.R.
 
Methylation of promoter regions of genes of the human intrauterine renin angiotensin system and their expression
Int. J. Endocrinol.
2015
, vol. 
2015
 pg. 
459818
 
[PubMed]
126
Wang
 
Y.
Lumbers
 
E.R.
Sykes
 
S.D.
Pringle
 
K.G.
 
Regulation of the renin-angiotensin system pathways in the human decidua
Reprod. Sci.
2015
, vol. 
22
 (pg. 
865
-
872
)
[PubMed]
127
Wang
 
Y.
Pringle
 
K.G.
Lumbers
 
E.R.
 
The effects of cyclic AMP, sex steroids and global hypomethylation on the expression of genes controlling the activity of the renin-angiotensin system in placental cell lines
Placenta
2013
, vol. 
34
 (pg. 
275
-
280
)
[PubMed]
128
Wang
 
Y.
Pringle
 
K.G.
Sykes
 
S.D.
Marques
 
F.Z.
Morris
 
B.J.
Zakar
 
T.
Lumbers
 
E.R.
 
Fetal sex affects expression of renin-angiotensin system components in term human decidua
Endocrinology
2012
, vol. 
153
 (pg. 
462
-
468
)
[PubMed]
129
Yilmaz
 
Z.
Yildirim
 
T.
Yilmaz
 
R.
Aybal-Kutlugun
 
A.
Altun
 
B.
Kucukozkan
 
T.
Erdem
 
Y.
 
Association between urinary angiotensinogen, hypertension and proteinuria in pregnant women with preeclampsia
J. Renin Angiotensin Aldosterone Syst.
2015
, vol. 
16
 (pg. 
514
-
520
)
[PubMed]
130
Zhou
 
A.
Carrell
 
R.W.
Murphy
 
M.P.
Wei
 
Z.
Yan
 
Y.
Stanley
 
P.L.
Stein
 
P.E.
Broughton Pipkin
 
F.
Read
 
R.J.
 
A redox switch in angiotensinogen modulates angiotensin release
Nature
2010
, vol. 
468
 (pg. 
108
-
111
)
[PubMed]
131
Zhou
 
A.
Dekker
 
G.A.
Lumbers
 
E.R.
Lee
 
S.Y.
Thompson
 
S.D.
McCowan
 
L.M.
Roberts
 
C.T.
 
SCOPE, consortium
The association of AGTR2 polymorphisms with preeclampsia and uterine artery bilateral notching is modulated by maternal BMI
Placenta
2013
, vol. 
34
 (pg. 
75
-
81
)
[PubMed]
132
Hsueh
 
W.A.
Luetscher
 
J.A.
Carlson
 
E.J.
Grislis
 
G.
Fraze
 
E.
McHargue
 
A.
 
Changes in active and inactive renin throughout pregnancy
J. Clin. Endocrinol. Metab.
1982
, vol. 
54
 (pg. 
1010
-
1016
)
[PubMed]
133
Nguyen
 
G.
Delarue
 
F.
Burckle
 
C.
Bouzhir
 
L.
Giller
 
T.
Sraer
 
J.D.
 
Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin
J. Clin. Invest.
2002
, vol. 
109
 (pg. 
1417
-
1427
)
[PubMed]
134
Higuchi
 
S.
Ohtsu
 
H.
Suzuki
 
H.
Shirai
 
H.
Frank
 
G.D.
Eguchi
 
S.
 
Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology
Clin. Sci. (Lond).
2007
, vol. 
112
 (pg. 
417
-
428
)
[PubMed]
135
Cipolla
 
M.J.
 
Cerebrovascular function in pregnancy and eclampsia
Hypertension
2007
, vol. 
50
 (pg. 
14
-
24
)
[PubMed]
136
Cipolla
 
M.J.
Bishop
 
N.
Chan
 
S.L.
 
Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum
Hypertension
2012
, vol. 
60
 (pg. 
705
-
711
)
[PubMed]
137
Ekholm
 
E.M.
Erkkola
 
R.U.
 
Autonomic cardiovascular control in pregnancy
Eur. J. Obstet. Gynecol. Reprod. Biol.
1996
, vol. 
64
 (pg. 
29
-
36
)
[PubMed]
138
Ekholm
 
E.M.
Piha
 
S.J.
Erkkola
 
R.U.
Antila
 
K.J.
 
Autonomic cardiovascular reflexes in pregnancy
A longitudinal study. Clin. Auton. Res.
1994
, vol. 
4
 (pg. 
161
-
165
)
139
Ekholm
 
E.M.
Tahvanainen
 
K.U.
Metsala
 
T.
 
Heart rate and blood pressure variabilities are increased in pregnancy-induced hypertension
Am. J. Obstet. Gynecol.
1997
, vol. 
177
 (pg. 
1208
-
1212
)
[PubMed]
140
Flood
 
P.
McKinley
 
P.
Monk
 
C.
Muntner
 
P.
Colantonio
 
L.D.
Goetzl
 
L.
Hatch
 
M.
Sloan
 
R.P.
 
Beat-to-beat heart rate and blood pressure variability and hypertensive disease in pregnancy
Am. J. Perinatol.
2015
, vol. 
32
 (pg. 
1050
-
1058
)
[PubMed]
141
Greenwood
 
J.P.
Stoker
 
J.B.
Walker
 
J.J.
Mary
 
D.A.
 
Sympathetic nerve discharge in normal pregnancy and pregnancy-induced hypertension
J. Hypertens.
1998
, vol. 
16
 (pg. 
617
-
624
)
[PubMed]
142
Yang
 
C.C.
Chao
 
T.C.
Kuo
 
T.B.
Yin
 
C.S.
Chen
 
H.I.
 
Preeclamptic pregnancy is associated with increased sympathetic and decreased parasympathetic control of HR
Am. J. Physiol. Heart Circ. Physiol.
2000
, vol. 
278
 (pg. 
H1269
-
H1273
)
[PubMed]
143
Pal
 
G.K.
Shyma
 
P.
Habeebullah
 
S.
Shyjus
 
P.
Pal
 
P.
 
Spectral analysis of heart rate variability for early prediction of pregnancy-induced hypertension
Clin. Exp. Hypertens.
2009
, vol. 
31
 (pg. 
330
-
341
)
[PubMed]
144
Chen
 
G.Y.
Kuo
 
C.D.
 
The effect of the lateral decubitus position on vagal tone
Anaesthesia
1997
, vol. 
52
 (pg. 
653
-
657
)
[PubMed]
145
Kuo
 
C.D.
Chen
 
G.Y.
Yang
 
M.J.
Tsai
 
Y.S.
 
The effect of position on autonomic nervous activity in late pregnancy
Anaesthesia
1997
, vol. 
52
 (pg. 
1161
-
1165
)
[PubMed]
146
Lee
 
S.W.
Khaw
 
K.S.
Ngan Kee
 
W.D.
Leung
 
T.Y.
Critchley
 
L.A.
 
Haemodynamic effects from aortocaval compression at different angles of lateral tilt in non-labouring term pregnant women
Br. J Anaesth.
2012
, vol. 
109
 (pg. 
950
-
956
)
[PubMed]
147
Rang
 
S.
Wolf
 
H.
Montfrans
 
G.A.
Karemaker
 
J.M.
 
Non-invasive assessment of autonomic cardiovascular control in normal human pregnancy and pregnancy- associated hypertensive disorders: a review
J. Hypertens.
2002
, vol. 
20
 (pg. 
2111
-
2119
)
[PubMed]
148
Lucini
 
D.
Strappazzon
 
P.
Dalla Vecchia
 
L.
Maggioni
 
C.
Pagani
 
M.
 
Cardiac autonomic adjustments to normal human pregnancy: insight from spectral analysis of R-R interval and systolic arterial pressure variability
J. Hypertens.
1999
, vol. 
17
 
12 Pt 2
(pg. 
1899
-
1904
)
[PubMed]
149
Cunningham
 
F.G.
Lindheimer
 
M.D.
 
Hypertension in pregnancy
N. Engl. J. Med.
1992
, vol. 
326
 (pg. 
927
-
932
)
[PubMed]
150
Roberts
 
J.M.
Redman
 
C.W.
 
Pre-eclampsia: more than pregnancy-induced hypertension
Lancet
1993
, vol. 
341
 (pg. 
1447
-
1451
)
[PubMed]
151
Schobel
 
H.P.
Frank
 
H.
Naraghi
 
R.
Geiger
 
H.
Titz
 
E.
Heusser
 
K.
 
Hypertension in patients with neurovascular compression is associated with increased central sympathetic outflow
J. Am. Soc. Nephrol.
2002
, vol. 
13
 (pg. 
35
-
41
)
[PubMed]
152
Greenwood
 
J.P.
Scott
 
E.M.
Stoker
 
J.B.
Walker
 
J.J.
Mary
 
D.A.
 
Sympathetic neural mechanisms in normal and hypertensive pregnancy in humans
Circulation
2001
, vol. 
104
 (pg. 
2200
-
2204
)
[PubMed]
153
Airaksinen
 
K.E.
Kirkinen
 
P.
Takkunen
 
J.T.
 
Autonomic nervous dysfunction in severe pre-eclampsia
Eur. J. Obstet. Gynecol. Reprod. Biol.
1985
, vol. 
19
 (pg. 
269
-
276
)
[PubMed]
154
Khan
 
G.A.N.
Ishrat
 
N.
Zulquarnain
 
 
Analysis of heart rate variability in pre-eclamptic pregnancy: a study employing frequency domain analysis
Int. J. Reprod. Contracept. Obstet. Gynecol.
2014
, vol. 
3
 (pg. 
1037
-
1042
)
155
Pal
 
G.K.
Shyma
 
P.
Habeebullah
 
S.
Pal
 
P.
Nanda
 
N.
Shyjus
 
P.
 
Vagal withdrawal and sympathetic overactivity contribute to the genesis of early-onset pregnancy-induced hypertension
Int. J. Hypertens.
2011
, vol. 
2011
 pg. 
361417
 
[PubMed]
156
Poulet
 
R.
Gentile
 
M.T.
Vecchione
 
C.
Distaso
 
M.
Aretini
 
A.
Fratta
 
L.
Russo
 
G.
Echart
 
C.
Maffei
 
A.
De Simoni
 
M.G.
Lembo
 
G.
 
Acute hypertension induces oxidative stress in brain tissues
J. Cereb. Blood Flow Metab.
2006
, vol. 
26
 (pg. 
253
-
262
)
[PubMed]
157
Li
 
B.
Liu
 
Q.
Xuan
 
C.
Guo
 
L.
Shi
 
R.
Zhang
 
Q.
O'Rourke
 
S.T.
Liu
 
K.
Sun
 
C.
 
GABAB receptor gene transfer into the nucleus tractus solitarii induces chronic blood pressure elevation in normotensive rats
Circ. J.
2013
, vol. 
77
 (pg. 
2558
-
2566
)
[PubMed]
158
Zubcevic
 
J.
Potts
 
J.T.
 
Role of GABAergic neurones in the nucleus tractus solitarii in modulation of cardiovascular activity
Exp. Physiol.
2010
, vol. 
95
 (pg. 
909
-
918
)
[PubMed]
159
Li
 
D.P.
Pan
 
H.L.
 
Role of GABAB receptors in autonomic control of systemic blood pressure
Adv. Pharmacol.
2010
, vol. 
58
 (pg. 
257
-
286
)
[PubMed]
160
Zhang
 
Q.
Yao
 
F.
O'Rourke
 
S.T.
Qian
 
S.Y.
Sun
 
C.
 
Angiotensin II enhances GABA(B) receptor-mediated responses and expression in nucleus tractus solitarii of rats
Am. J. Physiol. Heart Circ. Physiol.
2009
, vol. 
297
 (pg. 
H1837
-
H1844
)
[PubMed]
161
Yao
 
F.
Sumners
 
C.
O'Rourke
 
S.T.
Sun
 
C.
 
Angiotensin II increases GABAB receptor expression in nucleus tractus solitarii of rats
Am. J. Physiol. Heart Circ. Physiol.
2008
, vol. 
294
 (pg. 
H2712
-
H2720
)
[PubMed]
162
Spary
 
E.J.
Maqbool
 
A.
Saha
 
S.
Batten
 
T.F.
 
Increased GABA B receptor subtype expression in the nucleus of the solitary tract of the spontaneously hypertensive rat
J. Mol. Neurosci.
2008
, vol. 
35
 (pg. 
211
-
224
)
[PubMed]
163
Zhang
 
W.
Herrera-Rosales
 
M.
Mifflin
 
S.
 
Chronic hypertension enhances the postsynaptic effect of baclofen in the nucleus tractus solitarius
Hypertension
2007
, vol. 
49
 (pg. 
659
-
663
)
[PubMed]
164
Billman
 
G.E.
 
The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance
Front. Physiol.
2013
, vol. 
4
 pg. 
26
 
[PubMed]
165
Cohen
 
M.A.
Taylor
 
J.A.
 
Short-term cardiovascular oscillations in man: measuring and modelling the physiologies
J. Physiol.
2002
, vol. 
542
 
Pt 3
(pg. 
669
-
683
)
[PubMed]
166
Taylor
 
J.A.
Myers
 
C.W.
Halliwill
 
J.R.
Seidel
 
H.
Eckberg
 
D.L.
 
Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans
Am. J. Physiol Heart Circ. Physiol.
2001
, vol. 
280
 (pg. 
H2804
-
H2814
)
[PubMed]
167
Fagius
 
J.
Sundlof
 
G.
 
The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles
J. Physiol.
1986
, vol. 
377
 (pg. 
429
-
443
)
[PubMed]
168
Eckberg
 
D.L.
Mohanty
 
S.K.
Raczkowska
 
M.
 
Trigeminal-baroreceptor reflex interactions modulate human cardiac vagal efferent activity
J. Physiol.
1984
, vol. 
347
 (pg. 
75
-
83
)
[PubMed]
169
Sacha
 
J.
Pluta
 
W.
 
Different methods of heart rate variability analysis reveal different correlations of heart rate variability spectrum with average heart rate
J. Electrocardiol.
2005
, vol. 
38
 (pg. 
47
-
53
)
[PubMed]
170
Sacha
 
J.
Pluta
 
W.
 
Alterations of an average heart rate change heart rate variability due to mathematical reasons
Int. J. Cardiol.
2008
, vol. 
128
 (pg. 
444
-
447
)
[PubMed]
171
Bernardi
 
L.
Keller
 
F.
Sanders
 
M.
Reddy
 
P.S.
Griffith
 
B.
Meno
 
F.
Pinsky
 
M.R.
 
Respiratory sinus arrhythmia in the denervated human heart
J. Appl. Physiol.
1989
, vol. 
67
 (pg. 
1447
-
1455
)
[PubMed]
172
Fu
 
Q.
 
Microneurographic research in women
Front. Physiol.
2012
, vol. 
3
 pg. 
278
 
[PubMed]
173
Wallin
 
B.G.
 
Robertson
 
D.
 
Sympathetic microneurography
Primer on the Autonomic Nervous System
2012
San Diego, CA
Elsevier
(pg. 
389
-
392
)
174
Charkoudian
 
N.
Wallin
 
B.G.
 
Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics
Compr. Physiol.
2014
, vol. 
4
 (pg. 
825
-
850
)
[PubMed]
175
Greenwood
 
J.P.
Scott
 
E.M.
Walker
 
J.J.
Stoker
 
J.B.
Mary
 
D.A.
 
The magnitude of sympathetic hyperactivity in pregnancy-induced hypertension and preeclampsia
Am. J. Hypertens.
2003
, vol. 
16
 (pg. 
194
-
199
)
[PubMed]
176
Fu
 
Q.
Levine
 
B.D.
 
Autonomic circulatory control during pregnancy in humans
Semin. Reprod Med.
2009
, vol. 
27
 (pg. 
330
-
337
)
[PubMed]
177
Lohmeier
 
T.E.
Warren
 
S.
Cunningham
 
J.T.
 
Sustained activation of the central baroreceptor pathway in obesity hypertension
Hypertension
2003
, vol. 
42
 (pg. 
96
-
102
)
[PubMed]
178
Barman
 
S.M.
Barrett
 
K.E.
Boitano
 
S.
Brooks
 
H.L.
 
Barman
 
S.M.
Barrett
 
K.E.
Boitano
 
S.
Brooks
 
H.L
 
Cardiovascular regulatory mechanisms
Ganong's Review of Medical Physiology
2010
23rd edn
New York
Lange Medical, McGraw-Hill
(pg. 
555
-
568
)
179
Lohmeier
 
T.E.
Drummond
 
H.A.
 
Lip
 
G.Y.H.
Hall
 
J.E.
 
The baroreflex in the pathogenesis of hypertension
Comprehensive Hypertension
2007
Philadelphia, PA
Elsevier
(pg. 
265
-
279
)
180
Mifflin
 
S.W.
 
What does the brain know about blood pressure?
News Physiol. Sci.
2001
, vol. 
16
 (pg. 
266
-
271
)
[PubMed]
181
Andresen
 
M.C.
Doyle
 
M.W.
Jin
 
Y.H.
Bailey
 
T.W.
 
Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius
Ann. N. Y. Acad. Sci.
2001
, vol. 
940
 (pg. 
132
-
141
)
[PubMed]
182
Lohmeier
 
T.E.
Iliescu
 
R.
 
The baroreflex as a long-term controller of arterial pressure
Physiology (Bethesda)
2015
, vol. 
30
 (pg. 
148
-
158
)
[PubMed]
183
Accorsi-Mendonca
 
D.
Machado
 
B.H.
 
Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons
Auton. Neurosci.
2013
, vol. 
175
 (pg. 
3
-
8
)
[PubMed]
184
Brunt
 
V.E.
Miner
 
J.A.
Kaplan
 
P.F.
Halliwill
 
J.R.
Strycker
 
L.A.
Minson
 
C.T.
 
Short-term administration of progesterone and estradiol independently alter carotid-vasomotor, but not carotid-cardiac, baroreflex function in young women
Am. J. Physiol. Heart Circ. Physiol.
2013
, vol. 
305
 (pg. 
H1041
-
H1049
)
[PubMed]
185
Brooks
 
V.L.
Cassaglia
 
P.A.
Zhao
 
D.
Goldman
 
R.K.
 
Baroreflex function in females: changes with the reproductive cycle and pregnancy
Gend. Med.
2012
, vol. 
9
 (pg. 
61
-
67
)
[PubMed]
186
Brooks
 
V.L.
Dampney
 
R.A.
Heesch
 
C.M.
 
Pregnancy and the endocrine regulation of the baroreceptor reflex
Am. J. Physiol. Regul. Integr. Comp. Physiol.
2010
, vol. 
299
 (pg. 
R439
-
R451
)
[PubMed]
187
Azar
 
A.S.
Brooks
 
V.L.
 
Impaired baroreflex gain during pregnancy in conscious rats: role of brain insulin
Hypertension
2011
, vol. 
57
 (pg. 
283
-
288
)
[PubMed]
188
Hines
 
T.
 
Baroreceptor afferent discharge in the pregnant rat
Am. J. Physiol. Regul. Integr. Comp. Physiol.
2000
, vol. 
278
 (pg. 
R1433
-
R1440
)
[PubMed]
189
Laiprasert
 
J.D.
Hamlin
 
R.L.
Heesch
 
C.M.
 
Afferent baroreceptor discharge in pregnant rats
Am. J. Physiol. Heart Circ. Physiol.
2001
, vol. 
281
 (pg. 
H2456
-
H2462
)
[PubMed]
190
Voss
 
A.
Malberg
 
H.
Schumann
 
A.
Wessel
 
N.
Walther
 
T.
Stepan
 
H.
Faber
 
R.
 
Baroreflex sensitivity, heart rate, and blood pressure variability in normal pregnancy
Am. J. Hypertens.
2000
, vol. 
13
 (pg. 
1218
-
1225
)
[PubMed]
191
Fischer
 
C.
Voss
 
A.
 
Three-dimensional segmented poincare plot analyses SPPA3 investigates cardiovascular and cardiorespiratory couplings in hypertensive pregnancy disorders
Front. Bioeng. Biotechnol.
2014
, vol. 
2
 pg. 
51
 
[PubMed]
192
Hermida
 
R.C.
Ayala
 
D.E.
Mojon
 
A.
Fernandez
 
J.R.
Silva
 
I.
Ucieda
 
R.
Iglesias
 
M.
 
High sensitivity test for the early diagnosis of gestational hypertension and preeclampsia. I. Predictable variability of cardiovascular characteristics during gestation in healthy and hypertensive pregnant women
J. Perinat. Med.
1997
, vol. 
25
 (pg. 
101
-
109
)
[PubMed]
193
Carrettiero
 
D.C.
Ferrari
 
M.F.
Fior-Chadi
 
D.R.
 
alpha2-Adrenergic receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats during development
Auton. Neurosci.
2012
, vol. 
166
 (pg. 
39
-
46
)
[PubMed]
194
Carrettiero
 
D.C.
Fior-Chadi
 
D.R.
 
Adenosine A1 receptor distribution in the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats
J. Neural Transm. (Vienna)
2004
, vol. 
111
 (pg. 
465
-
473
)
[PubMed]
195
Mei
 
L.
Zhang
 
J.
Mifflin
 
S.
 
Hypertension alters GABA receptor-mediated inhibition of neurons in the nucleus of the solitary tract
Am. J. Physiol Regul. Integr. Comp Physiol.
2003
, vol. 
285
 (pg. 
R1276
-
R1286
)
[PubMed]
196
Santiago
 
F.E.
Fior-Chadi
 
D.R.
Carrettiero
 
D.C.
 
Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development
Auton. Neurosci.
2015
, vol. 
187
 (pg. 
36
-
44
)
[PubMed]
197
Sun
 
G.C.
Ho
 
W.Y.
Chen
 
B.R.
Cheng
 
P.W.
Cheng
 
W.H.
Hsu
 
M.C.
Yeh
 
T.C.
Hsiao
 
M.
Lu
 
P.J.
Tseng
 
C.J.
 
GPCR dimerization in brainstem nuclei contributes to the development of hypertension
Br. J. Pharmacol.
2015
, vol. 
172
 (pg. 
2507
-
2518
)
[PubMed]
198
Vitela
 
M.
Mifflin
 
S.W.
 
gamma-Aminobutyric acid(B) receptor-mediated responses in the nucleus tractus solitarius are altered in acute and chronic hypertension
Hypertension
2001
, vol. 
37
 
2 Pt 2
(pg. 
619
-
622
)
[PubMed]
199
Yao
 
S.T.
 
Alpha-adrenergic receptors in the nucleus tractus solitarii: fitting a new piece to a complex puzzle
Exp. Physiol.
2009
, vol. 
94
 (pg. 
771
-
772
)
[PubMed]
200
Zhang
 
W.
Mifflin
 
S.
 
Plasticity of GABAergic mechanisms within the nucleus of the solitary tract in hypertension
Hypertension
2010
, vol. 
55
 (pg. 
201
-
206
)
[PubMed]
201
Zhang
 
W.
Mifflin
 
S.
 
Chronic hypertension enhances presynaptic inhibition by baclofen in the nucleus of the solitary tract
Hypertension
2010
, vol. 
55
 (pg. 
481
-
486
)
[PubMed]
202
Li
 
J.
LaMarca
 
B.
Reckelhoff
 
J.F.
 
A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model
Am. J. Physiol. Heart Circ. Physiol.
2012
, vol. 
303
 (pg. 
H1
-
H8
)
[PubMed]
203
Benarroch
 
E.E.
 
GABAB receptors: structure, functions, and clinical implications
Neurology
2012
, vol. 
78
 (pg. 
578
-
584
)
[PubMed]
204
Bettler
 
B.
Kaupmann
 
K.
Mosbacher
 
J.
Gassmann
 
M.
 
Molecular structure and physiological functions of GABA(B) receptors
Physiol. Rev.
2004
, vol. 
84
 (pg. 
835
-
867
)
[PubMed]
205
Emson
 
P.C.
 
GABA(B) receptors: structure and function
Prog. Brain Res.
2007
, vol. 
160
 (pg. 
43
-
57
)
[PubMed]
206
Ulrich
 
D.
Bettler
 
B.
 
GABA(B) receptors: synaptic functions and mechanisms of diversity
Curr. Opin. Neurobiol.
2007
, vol. 
17
 (pg. 
298
-
303
)
[PubMed]
207
Yin
 
M.
Sved
 
A.F.
 
Role of gamma-aminobutyric acid B receptors in baroreceptor reflexes in hypertensive rats
Hypertension
1996
, vol. 
27
 (pg. 
1291
-
1298
)
[PubMed]
208
Catelli
 
J.M.
Sved
 
A.F.
 
Enhanced pressor response to GABA in the nucleus tractus solitarii of the spontaneously hypertensive rat
Eur. J. Pharmacol.
1988
, vol. 
151
 (pg. 
243
-
248
)
[PubMed]
209
Singh
 
R.
Ticku
 
M.K.
 
Comparison of [3H]baclofen binding to GABAB receptors in spontaneously hypertensive and normotensive rats
Brain Res.
1985
, vol. 
358
 (pg. 
1
-
9
)
[PubMed]
210
Tsukamoto
 
K.
Sved
 
A.F.
 
Enhanced gamma-aminobutyric acid-mediated responses in nucleus tractus solitarius of hypertensive rats
Hypertension
1993
, vol. 
22
 (pg. 
819
-
825
)
[PubMed]
211
Durgam
 
V.R.
Vitela
 
M.
Mifflin
 
S.W.
 
Enhanced gamma-aminobutyric acid-B receptor agonist responses and mRNA within the nucleus of the solitary tract in hypertension
Hypertension
1999
, vol. 
33
 
1 Pt 2
(pg. 
530
-
536
)
[PubMed]
212
Allen
 
A.M.
Zhuo
 
J.
Mendelsohn
 
F.A.O.
 
Localization and function of angiotensin AT1 receptors
Am. J. Hypertens.
2000
, vol. 
13
 
1, Supplement 1
(pg. 
31S
-
38S
)
[PubMed]
213
Lenkei
 
Z.
Palkovits
 
M.
Corvol
 
P.
Llorens-Cortes
 
C.
 
Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review
Front. Neuroendocrinol.
1997
, vol. 
18
 (pg. 
383
-
439
)
[PubMed]
214
Schreihofer
 
A.M.
Guyenet
 
P.G.
 
The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla
Clin. Exp. Pharmacol. Physiol.
2002
, vol. 
29
 (pg. 
514
-
521
)
[PubMed]
215
Averill
 
D.B.
Diz
 
D.I.
 
Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata
Brain Res. Bull.
2000
, vol. 
51
 (pg. 
119
-
128
)
[PubMed]
216
Saxena
 
A.R.
Karumanchi
 
S.A.
Brown
 
N.J.
Royle
 
C.M.
McElrath
 
T.F.
Seely
 
E.W.
 
Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy
Hypertension
2010
, vol. 
55
 (pg. 
1239
-
1245
)
[PubMed]
217
Altman
 
J.D.
Trendelenburg
 
A.U.
MacMillan
 
L.
Bernstein
 
D.
Limbird
 
L.
Starke
 
K.
Kobilka
 
B.K.
Hein
 
L.
 
Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice
Mol. Pharmacol.
1999
, vol. 
56
 (pg. 
154
-
161
)
[PubMed]
218
Brede
 
M.
Wiesmann
 
F.
Jahns
 
R.
Hadamek
 
K.
Arnolt
 
C.
Neubauer
 
S.
Lohse
 
M.J.
Hein
 
L.
 
Feedback inhibition of catecholamine release by two different alpha2-adrenoceptor subtypes prevents progression of heart failure
Circulation
2002
, vol. 
106
 (pg. 
2491
-
2496
)
[PubMed]
219
Accorsi-Mendonca
 
D.
Zoccal
 
D.B.
Bonagamba
 
L.G.
Machado
 
B.H.
 
Glial cells modulate the synaptic transmission of NTS neurons sending projections to ventral medulla of Wistar rats
Physiol. Rep.
2013
, vol. 
1
 pg. 
e00080
 
[PubMed]
220
Bruno
 
A.N.
Diniz
 
G.P.
Ricachenevsky
 
F.K.
Pochmann
 
D.
Bonan
 
C.D.
Barreto-Chaves
 
M.L.
Sarkis
 
J.J.
 
Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices
Neurosci. Res.
2005
, vol. 
52
 (pg. 
61
-
68
)
[PubMed]
221
Landolt
 
H.P.
Retey
 
J.V.
Adam
 
M.
 
Reduced neurobehavioral impairment from sleep deprivation in older adults: contribution of adenosinergic mechanisms
Front. Neurol.
2012
, vol. 
3
 pg. 
62
 
[PubMed]
222
Carrettiero
 
D.C.
Fior-Chadi
 
D.R.
 
Age-dependent changes in adenosine A1 receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats
J. Neural Transm. (Vienna).
2008
, vol. 
115
 (pg. 
1109
-
1118
)
[PubMed]
223
Carrettiero
 
D.C.
Almeida
 
R.S.
Fior-Chadi
 
D.R.
 
Adenosine modulates alpha2-adrenergic receptors within specific subnuclei of the nucleus tractus solitarius in normotensive and spontaneously hypertensive rats
Hypertens. Res.
2008
, vol. 
31
 (pg. 
2177
-
2186
)
[PubMed]
224
Carrettiero
 
D.C.
da Silva
 
S.M.
Fior-Chadi
 
D.R.
 
Adenosine modulates alpha2-adrenergic receptors through a phospholipase C pathway in brainstem cell culture of rats
Auton. Neurosci.
2009
, vol. 
151
 (pg. 
174
-
177
)
[PubMed]
225
Vilardaga
 
J.P.
Nikolaev
 
V.O.
Lorenz
 
K.
Ferrandon
 
S.
Zhuang
 
Z.
Lohse
 
M.J.
 
Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling
Nat. Chem. Biol.
2008
, vol. 
4
 (pg. 
126
-
131
)
[PubMed]
226
Delbarre
 
B.
Casset-Senon
 
D.
Delbarre
 
G.
Sestillange
 
P.
Christin
 
O.
 
Naloxone effects on blood pressure, analgesia and diuresis in spontaneous hypertensive and normotensive rats
Neurosci. Lett.
1982
, vol. 
30
 (pg. 
167
-
172
)
[PubMed]
227
Oatridge
 
A.
Holdcroft
 
A.
Saeed
 
N.
Hajnal
 
J.V.
Puri
 
B.K.
Fusi
 
L.
Bydder
 
G.M.
 
Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia
AJNR Am. J. Neuroradiol.
2002
, vol. 
23
 (pg. 
19
-
26
)
[PubMed]
228
Hillerer
 
K.M.
Jacobs
 
V.R.
Fischer
 
T.
Aigner
 
L.
 
The maternal brain: an organ with peripartal plasticity
Neural Plast.
2014
, vol. 
2014
 pg. 
574159
 
[PubMed]
229
Mielke
 
M.M.
Milic
 
N.M.
Weissgerber
 
T.L.
White
 
W.M.
Kantarci
 
K.
Mosley
 
T.H.
Windham
 
B.G.
Simpson
 
B.N.
Turner
 
S.T.
Garovic
 
V.D.
 
Impaired cognition and brain atrophy decades after hypertensive pregnancy disorders
Circ. Cardiovasc. Qual. Outcomes
2016
, vol. 
9
 (pg. 
S70
-
S76
)
[PubMed]
230
Riskin-Mashiah
 
S.
Belfort
 
M.A.
 
Preeclampsia is associated with global cerebral hemodynamic changes
J. Soc. Gynecol. Investig.
2005
, vol. 
12
 (pg. 
253
-
256
)
[PubMed]
231
Riskin-Mashiah
 
S.
Belfort
 
M.A.
Saade
 
G.R.
Herd
 
J.A.
 
Cerebrovascular reactivity in normal pregnancy and preeclampsia
Obstet. Gynecol.
2001
, vol. 
98
 
5 Pt 1
(pg. 
827
-
832
)
[PubMed]
232
Williams
 
K.P.
Wilson
 
S.
 
Variation in cerebral perfusion pressure with different hypertensive states in pregnancy
Am. J. Obstet. Gynecol.
1998
, vol. 
179
 (pg. 
1200
-
1203
)
[PubMed]
233
Warrington
 
J.P.
Fan
 
F.
Murphy
 
S.R.
Roman
 
R.J.
Drummond
 
H.A.
Granger
 
J.P.
Ryan
 
M.J.
 
Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability
Physiol. Rep.
2014
, vol. 
2
 pg. 
e12134
 
[PubMed]
234
Osmanagaoglu
 
M.A.
Dinc
 
G.
Osmanagaoglu
 
S.
Dinc
 
H.
Bozkaya
 
H.
 
Comparison of cerebral magnetic resonance and electroencephalogram findings in pre-eclamptic and eclamptic women
Aust. N. Z. J. Obstet. Gynaecol.
2005
, vol. 
45
 (pg. 
384
-
390
)
[PubMed]
235
Wiebers
 
D.O.
 
Ischemic cerebrovascular complications of pregnancy
Arch. Neurol.
1985
, vol. 
42
 (pg. 
1106
-
1113
)
[PubMed]
236
Demirtas
 
O.
Gelal
 
F.
Vidinli
 
B.D.
Demirtas
 
L.O.
Uluc
 
E.
Baloglu
 
A.
 
Cranial MR imaging with clinical correlation in preeclampsia and eclampsia
Diagn. Interv. Radiol.
2005
, vol. 
11
 (pg. 
189
-
194
)
[PubMed]
237
Schwartz
 
R.B.
Feske
 
S.K.
Polak
 
J.F.
DeGirolami
 
U.
Iaia
 
A.
Beckner
 
K.M.
Bravo
 
S.M.
Klufas
 
R.A.
Chai
 
R.Y.
Repke
 
J.T.
 
Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy
Radiology
2000
, vol. 
217
 (pg. 
371
-
376
)
[PubMed]
238
Schwartz
 
R.B.
Mulkern
 
R.V.
Gudbjartsson
 
H.
Jolesz
 
F.
 
Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis
AJNR Am. J. Neuroradiol.
1998
, vol. 
19
 (pg. 
859
-
862
)
[PubMed]
239
Sakaharova
 
A.V.
 
Regional characteristics of the noradrenergic and cholinergic innervation of the vessels of the brain surface
Biull. Eksp. Biol. Med.
1980
, vol. 
89
 (pg. 
141
-
143
)
[PubMed]
240
Housni
 
B.
Bayad
 
R.
Cherkab
 
R.
Salmi
 
S.
Miguil
 
M.
 
Brainstem ischemia and preeclampsia
Hypertens. Pregnancy
2004
, vol. 
23
 (pg. 
269
-
273
)
[PubMed]
241
Kittner
 
S.J.
Stern
 
B.J.
Feeser
 
B.R.
Hebel
 
R.
Nagey
 
D.A.
Buchholz
 
D.W.
Earley
 
C.J.
Johnson
 
C.J.
Macko
 
R.F.
Sloan
 
M.A.
, et al 
Pregnancy and the risk of stroke
N. Engl. J. Med.
1996
, vol. 
335
 (pg. 
768
-
774
)
[PubMed]
242
Sharshar
 
T.
Lamy
 
C.
Mas
 
J.L.
 
Incidence and causes of strokes associated with pregnancy and puerperium. A study in public hospitals of Ile de France. Stroke in Pregnancy Study Group
Stroke
1995
, vol. 
26
 (pg. 
930
-
936
)
[PubMed]
243
Wiebers
 
D.O.
 
Subarachnoid hemorrhage in pregnancy
Semin. Neurol.
1988
, vol. 
8
 (pg. 
226
-
229
)
[PubMed]
244
Brusse
 
I.A.
Peters
 
N.C.
Steegers
 
E.A.
Duvekot
 
J.J.
Visser
 
G.H.
 
Electroencephalography during normotensive and hypertensive pregnancy: a systematic review
Obstet. Gynecol. Surv.
2011
, vol. 
65
 (pg. 
794
-
803
)
245
Janzen
 
R.
Schroeder
 
C.
Heckel
 
H.
 
Eclampsia in the light of electroencephalographic investigations
Klin. Wochenschr.
1952
, vol. 
30
 (pg. 
1073
-
1079
)
[PubMed]
246
Kolstad
 
P.
 
The practical value of electro-encephalography in pre-eclampsia and eclampsia
Acta Obstet. Gynecol. Scand.
1961
, vol. 
40
 (pg. 
127
-
138
)
[PubMed]
247
Thomas
 
S.V.
Somanathan
 
N.
Radhakumari
 
R.
 
Interictal EEG changes in eclampsia
Electroencephalogr. Clin. Neurophysiol.
1995
, vol. 
94
 (pg. 
271
-
275
)
[PubMed]
248
Aukes
 
A.M.
Wessel
 
I.
Dubois
 
A.M.
Aarnoudse
 
J.G.
Zeeman
 
G.G.
 
Self-reported cognitive functioning in formerly eclamptic women
Am. J. Obstet. Gynecol.
2007
, vol. 
197
 (pg. 
e1
-
e6
)
[PubMed]
249
Delahaije
 
D.H.
Dirksen
 
C.D.
Peeters
 
L.L.
Smits
 
L.J.
 
Anxiety and depression following preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome. A systematic review
Acta Obstet. Gynecol. Scand.
2013
, vol. 
92
 (pg. 
746
-
761
)
[PubMed]
250
Hoedjes
 
M.
Berks
 
D.
Vogel
 
I.
Franx
 
A.
Bangma
 
M.
Darlington
 
A.S.
Visser
 
W.
Duvekot
 
J.J.
Habbema
 
J.D.
Steegers
 
E.A.
Raat
 
H.
 
Postpartum depression after mild and severe preeclampsia
J. Womens Health (Larchmt)
2011
, vol. 
20
 (pg. 
1535
-
1542
)
[PubMed]
251
Mautner
 
E.
Stern
 
C.
Deutsch
 
M.
Nagele
 
E.
Greimel
 
E.
Lang
 
U.
Cervar-Zivkovic
 
M.
 
The impact of resilience on psychological outcomes in women after preeclampsia: an observational cohort study
Health Qual. Life Outcomes
2013
, vol. 
11
 pg. 
194
 
[PubMed]
252
Poel
 
Y.H.
Swinkels
 
P.
de Vries
 
J.I.
 
Psychological treatment of women with psychological complaints after pre-eclampsia
J. Psychosom. Obstet. Gynaecol.
2009
, vol. 
30
 (pg. 
65
-
72
)
[PubMed]
253
Young
 
J.
 
The aetiology of eclampsia and albuminuria and their relation to accidental haemorrhage: (an anatomical and experimental investigation.)
Proc. R. Soc. Med.
1914
, vol. 
7
 (pg. 
307
-
348
)
254
Ogden
 
E.
Hildebrand
 
G. J.
Page
 
E.W.
 
Rise of blood pressure during ischemia of gravid uterus
Proc. Soc. Exp. Biol. Med.
1940
, vol. 
43
 (pg. 
49
-
51
)
255
Thadhani
 
R.
Hagmann
 
H.
Schaarschmidt
 
W.
Roth
 
B.
Cingoez
 
T.
Karumanchi
 
S.A.
Wenger
 
J.
Lucchesi
 
K.J.
Tamez
 
H.
Lindner
 
T.
, et al 
Removal of soluble fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia
J. Am. Soc. Nephrol.
2016
, vol. 
27
 (pg. 
903
-
913
)
[PubMed]
256
Parrish
 
M.R.
Wallace
 
K.
Tam Tam
 
K.B.
Herse
 
F.
Weimer
 
A.
Wenzel
 
K.
Wallukat
 
G.
Ray
 
L.F.
Arany
 
M.
Cockrell
 
K.
, et al 
Hypertension in response to AT1-AA: role of reactive oxygen species in pregnancy-induced hypertension
Am. J. Hypertens.
2011
, vol. 
24
 (pg. 
835
-
840
)
[PubMed]
257
George
 
E.M.
Stout
 
J.M.
Stec
 
D.E.
Granger
 
J.P.
 
Heme oxygenase induction attenuates TNF-alpha-induced hypertension in pregnant rodents
Front. Pharmacol.
2015
, vol. 
6
 pg. 
165
 
[PubMed]