Abstract

Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI–DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.

Introduction

Sonic Hedgehog (SHH), Indian Hedgehog (IHH) and Desert Hedgehog (DHH) are lipid-modified secreted proteins that are involved in embryonic patterning, fetal development, infantile growth, tissue repair and tumorigenesis [1–4]. Hedgehog proteins are secreted after autoproteolytic cleavage, C-terminal cholesteroylation and Hedgehog acyltransferase (HHAT)-dependent N-terminal palmitoylation [5,6]. Hedgehog ligands bind to Patched receptors (PTCH1 and PTCH2) and BOC/CDON/GAS1 co-receptors [7–9]. Canonical Hedgehog signaling through Patched receptors in ciliated cells leads to cholesterol/oxysterol-mediated activation of the G protein-coupled receptor (GPCR) Smoothened (SMO) [10–12], which releases the GLI2 and GLI3 transcription factors from SUFU-dependent cytoplasmic tethering and PKA-primed proteolytic processing [13–15]. GLI proteins then translocate to the nucleus and transcriptionally up-regulate BCL2, GLI1, HHIP, PTCH1, PTCH2 and other target genes (Figure 1).

Overview of Hedgehog/GLI signaling cascades

Figure 1
Overview of Hedgehog/GLI signaling cascades

Hedgehog ligands bind to Patched receptors and derepress the GPCR SMO. Hedgehog signals are then transduced to the canonical SMO-SUFU-GLI and non-canonical SMO-Gi-RhoA signaling cascades. Canonical Hedgehog/GLI signaling up-regulates the transcription of target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, MYCN, NANOG, PTCH1, PTCH2, SFRP1, SNAI1 (Snail), SOX2 and WNT2B, in a cellular context-dependent manner [4,41,182–190]. Non-canonical SMO-Gi-RhoA signaling promotes cytoskeletal reorganization and cellular motility and potentiates GLI1-dependent transcription. The Hedgehog signaling-independent activation of MTOR-S6K1 and MEK-ERK signaling enhances GLI-dependent transcription. Canonical and non-canonical Hedgehog signaling cascades, as well as Hedgehog-independent GLI signaling cascades, converge on the GLI transcription network. The activation of Hedgehog signaling in tumor cells leads to proliferation, self-renewal, survival and invasion though the GLI-dependent transcription network, hypoxia-dependent epithelial-to-mesenchymal transition (EMT) and RhoA-dependent cytoskeletal reorganization.

Figure 1
Overview of Hedgehog/GLI signaling cascades

Hedgehog ligands bind to Patched receptors and derepress the GPCR SMO. Hedgehog signals are then transduced to the canonical SMO-SUFU-GLI and non-canonical SMO-Gi-RhoA signaling cascades. Canonical Hedgehog/GLI signaling up-regulates the transcription of target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, MYCN, NANOG, PTCH1, PTCH2, SFRP1, SNAI1 (Snail), SOX2 and WNT2B, in a cellular context-dependent manner [4,41,182–190]. Non-canonical SMO-Gi-RhoA signaling promotes cytoskeletal reorganization and cellular motility and potentiates GLI1-dependent transcription. The Hedgehog signaling-independent activation of MTOR-S6K1 and MEK-ERK signaling enhances GLI-dependent transcription. Canonical and non-canonical Hedgehog signaling cascades, as well as Hedgehog-independent GLI signaling cascades, converge on the GLI transcription network. The activation of Hedgehog signaling in tumor cells leads to proliferation, self-renewal, survival and invasion though the GLI-dependent transcription network, hypoxia-dependent epithelial-to-mesenchymal transition (EMT) and RhoA-dependent cytoskeletal reorganization.

Non-canonical Hedgehog signaling to SMO-coupled Gi leads to activation of RhoA and other signaling cascades. Hedgehog/RhoA signaling induces cytoskeletal reorganization and cellular motility [16,17] and can potentiate GLI1-mediated target gene transcription through the megakaryoblastic leukemia 1 (MKL1) and serum response factor (SRF) transcriptional complex [18]. In addition, the MTOR-S6K1 and MEK-ERK signaling cascades activate GLI1-dependent transcription through post-translational modification and stabilization of GLI in a Hedgehog signaling-independent manner [19–21]. For example, S6K1 phosphorylates GLI1 on Ser84 (S84), and ERK also phosphorylates GLI1. Canonical and non-canonical Hedgehog signaling cascades, as well as Hedgehog-independent signaling cascades, converge on the GLI-dependent transcription network (Figure 1).

Hedgehog signaling cascades are aberrantly activated in human cancer due to genetic alterations (Figure 2). Hedgehog/GLI signaling activation in tumor cells promotes invasion and proliferation [22–24], as well as the survival and self-renewal of cancer stem cells (CSCs) in breast cancer [25,26], chronic myeloid leukemia (CML) [27], colorectal cancer [28,29], gastric cancer [30], lung cancer [21] and medulloblastoma [31]. In contrast, paracrine Hedgehog signaling activation in the tumor microenvironment (TME) promotes angiogenesis [32,33], fibrosis [34,35], immune evasion [36–38] and neuropathic pain [39,40] (Figure 3). Hedgehog signaling cascades cross-talk with the chemokine/cytokine, FGF, TGF-β, VEGF and WNT signaling cascades to orchestrate tumorigenesis [41–45] (Figure 3).

Genomic landscape of Hedgehog-related cancers

Figure 2
Genomic landscape of Hedgehog-related cancers

Loss-of-function (LoF) alterations in the PTCH1, PTCH2 and SUFU genes, gain-of-function (GoF) mutations in the SMO gene and amplification of the GLI1 and GLI2 genes cause aberrant activation of Hedgehog/GLI signaling in human cancer. Nonsense mutations, frame-shift mutations and missense mutations (W197C, G509D, R893L, T1106M, D1128Y, S1331C, G1343R and R1442Q) are representative LoF alterations in the PTCH1 gene [55,191]. By contrast, SMO missense mutations (T241M, V321M, L412F, S533N, A459V, W535L and R562Q) are GoF alterations [16,138,139]. Genetic alterations in Hedgehog/GLI signaling components frequently occur in BCC (85%) and SHH-subgroup medulloblastoma (87%) and also occur in breast cancer (33%), pancreatic cancer (19%), non-small-cell lung cancer (14%) and ovarian cancer (14%) but are less frequent in meningioma, colorectal cancer and gastric cancer. Abbreviation: BCC, basal cell carcinoma.

Figure 2
Genomic landscape of Hedgehog-related cancers

Loss-of-function (LoF) alterations in the PTCH1, PTCH2 and SUFU genes, gain-of-function (GoF) mutations in the SMO gene and amplification of the GLI1 and GLI2 genes cause aberrant activation of Hedgehog/GLI signaling in human cancer. Nonsense mutations, frame-shift mutations and missense mutations (W197C, G509D, R893L, T1106M, D1128Y, S1331C, G1343R and R1442Q) are representative LoF alterations in the PTCH1 gene [55,191]. By contrast, SMO missense mutations (T241M, V321M, L412F, S533N, A459V, W535L and R562Q) are GoF alterations [16,138,139]. Genetic alterations in Hedgehog/GLI signaling components frequently occur in BCC (85%) and SHH-subgroup medulloblastoma (87%) and also occur in breast cancer (33%), pancreatic cancer (19%), non-small-cell lung cancer (14%) and ovarian cancer (14%) but are less frequent in meningioma, colorectal cancer and gastric cancer. Abbreviation: BCC, basal cell carcinoma.

Hedgehog signaling activation in the TME

Figure 3
Hedgehog signaling activation in the TME

The activation of Hedgehog/GLI signaling in tumor cells (purple) and cancer-associated fibroblasts (CAFs) (blue) promotes VEGF-dependent endothelial activation and tumor angiogenesis (red) [32,33], which causes the hypoxia-induced up-regulation of VEGF, GLI2 and EMT regulators (SNAI1, TWIST, ZEB1 and ZEB2) to augment tumorigenesis [29,192]. The activation of paracrine Hedgehog signaling in CAFs induces the up-regulation of CXCL12/14, FGFs, IGF1 and WNTs [26,44], which activate CXCR4 [193], FGFR [194,195], IGF1R [81,196] and Frizzled [136] signaling in the TME, respectively. For example, CAF-derived FGF5 activate FGFR1 signaling in endothelial cells and mesenchymal tumor cells, and FGF7 activates FGFR2 signaling in epithelial tumor cells. The activation of CAFs or cancer-associated stellate cells also induces tissue fibrosis through the deposition of extracellular matrix [34,35,43] and neuropathic pain due to the stimulation of peripheral neurons [39,40]. Hedgehog-dependent tumors are characterized by increased infiltration or the presence of suppressive immune cells (green), such as M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells [36–38]. TGF-β family ligands are up-regulated in BCC [197] and SHH-subgroup medulloblastoma [38]. TGF-β derived from MDSCs, M2-TAMs and tumor cells activates CAFs [198,199], and then CAFs produce the cytokine CSF2 (GM-CSF) and the CCL2, CCL5 and CXCL12 chemokines [44,200] to expand myeloid lineage cells in the hematopoietic niche and recruit monocytes and MDSCs to the TME [201,202]. TGF-β converts peripheral naïve CD4+ T cells into Treg cells [203–205], and CCL17, CCL22 and CCL28 recruit Treg cells to the hypoxic and immunosuppressive TME [206–208]. M2-TAMs, MDSCs and Treg cells synergistically promote an immunosuppressive or immune-cold TME with decreased infiltration of immune effector cells. Abbreviation: BCC, basal cell carcinoma.

Figure 3
Hedgehog signaling activation in the TME

The activation of Hedgehog/GLI signaling in tumor cells (purple) and cancer-associated fibroblasts (CAFs) (blue) promotes VEGF-dependent endothelial activation and tumor angiogenesis (red) [32,33], which causes the hypoxia-induced up-regulation of VEGF, GLI2 and EMT regulators (SNAI1, TWIST, ZEB1 and ZEB2) to augment tumorigenesis [29,192]. The activation of paracrine Hedgehog signaling in CAFs induces the up-regulation of CXCL12/14, FGFs, IGF1 and WNTs [26,44], which activate CXCR4 [193], FGFR [194,195], IGF1R [81,196] and Frizzled [136] signaling in the TME, respectively. For example, CAF-derived FGF5 activate FGFR1 signaling in endothelial cells and mesenchymal tumor cells, and FGF7 activates FGFR2 signaling in epithelial tumor cells. The activation of CAFs or cancer-associated stellate cells also induces tissue fibrosis through the deposition of extracellular matrix [34,35,43] and neuropathic pain due to the stimulation of peripheral neurons [39,40]. Hedgehog-dependent tumors are characterized by increased infiltration or the presence of suppressive immune cells (green), such as M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells [36–38]. TGF-β family ligands are up-regulated in BCC [197] and SHH-subgroup medulloblastoma [38]. TGF-β derived from MDSCs, M2-TAMs and tumor cells activates CAFs [198,199], and then CAFs produce the cytokine CSF2 (GM-CSF) and the CCL2, CCL5 and CXCL12 chemokines [44,200] to expand myeloid lineage cells in the hematopoietic niche and recruit monocytes and MDSCs to the TME [201,202]. TGF-β converts peripheral naïve CD4+ T cells into Treg cells [203–205], and CCL17, CCL22 and CCL28 recruit Treg cells to the hypoxic and immunosuppressive TME [206–208]. M2-TAMs, MDSCs and Treg cells synergistically promote an immunosuppressive or immune-cold TME with decreased infiltration of immune effector cells. Abbreviation: BCC, basal cell carcinoma.

Current progress in nucleotide sequencing and information technologies (artificial intelligence and cognitive computing) is transforming clinical medicine toward precision medicine by integrating clinical records, literature, in-house data and public data [46–48]. Herein, Hedgehog signaling dysregulation in human cancer, Hedgehog signaling-targeted therapeutics and clinical trials of SMO inhibitors will be reviewed, and mechanisms of resistance to SMO inhibitors and strategies to enhance the clinical benefits of Hedgehog signaling blockade will be discussed.

Hedgehog signaling dysregulation in human cancer

Germline loss-of-function mutations in the PTCH1, PTCH2 and SUFU genes, which encode negative regulators of the Hedgehog signaling, cause a genetic predisposition to basal cell carcinoma (BCC), medulloblastoma and meningioma through aberrant activation of Hedgehog/GLI signaling cascades [49–54]. Germline PTCH1 alterations, such as nonsense mutations and frameshift mutations, cause basal cell nevus syndrome (BCNS, Gorlin syndrome or nevoid BCC syndrome), which is characterized by hereditary BCC and other features such as lamellar calcification of the falx cerebri, macrocephaly, maxillary keratocysts, palmoplantar pits and skeletal abnormalities, while postzygotic PTCH1 mutations cause unilateral or segmental BCNS [55]. Germline PTCH1 mutations also infrequently cause medulloblastoma (2% of BCNS individuals or 5% of children with BCNS), whereas germline SUFU mutations preferentially cause medulloblastoma (20% of infants with SHH-type medulloblastoma) rather than BCC [56,57]. Postzygotic gain-of-function SMO mutations (L412F) occur in BCNS [58] and in Curry–Jones syndrome, which is characterized by craniosynostosis, cerebral malformations, gastrointestinal malformations, patchy skin lesions and polysyndactyly [59]. Patients with Joubert syndrome who harbor recessive hypomorphic SUFU variants present with developmental delay, gait ataxia, intellectual disability and oculomotor apraxia but not medulloblastoma [60]. Taken together, these facts clearly indicate a spectrum of genetic disorders caused by germline or postzygotic mutations in the PTCH1, SMO or SUFU genes.

Somatic alterations in Hedgehog signaling components frequently occur in sporadic BCC (85%) [61] and SHH-subgroup medulloblastoma (87%) [62] and also occur in breast cancer (33%) [63], pancreatic cancer (19%) [64], non-small-cell lung cancer (NSCLC) (14%) [63] and ovarian cancer (14%) [63]; such alterations are less frequent in meningioma [65] and colorectal cancer [66]. For example, sporadic BCC harbors PTCH1 (73%), SMO (20%) and SUFU (8%) alterations, GLI1 or GLI2 amplification (8%) and MYCN amplification (7%) [61], whereas SHH-subgroup medulloblastoma harbors PTCH1 (45%), SMO (14%) and SUFU (8%) alterations, and GLI2 or MYCN amplification (14%) [62]. In contrast, rare types of gastric tumors, such as gastroblastoma and plexiform fibromyxoma, harbor MALAT1–GLI1 fusions [67,68]. In tumor cells, Hedgehog/GLI signaling cascades are aberrantly activated by genetic alterations, such as loss-of-function alterations in the PTCH1 or SUFU genes, gain-of-function mutations in the SMO gene (L412F, S533N, W535L and R562Q), and amplification of the GLI1 or GLI2 gene [69–73] (Figure 2), which contributes to human carcinogenesis through activation of the GLI transcription network.

The up-regulation of Hedgehog ligands, SMO and GLI target genes and their involvement in human tumorigenesis and malignant phenotypes have been reported [74,75]. SHH, DHH and GLI1 are up-regulated in luminal B and triple-negative breast cancer (TNBC) patients, which is associated with lymph node involvement, distant metastasis and poor prognosis [76]. Hedgehog signaling activation promotes colitis-associated tumorigenesis by potentiating TNF-α-induced inflammatory signaling [77] and in the survival of colorectal cancer cells through BCL2 up-regulation [78]. SHH up-regulation in the stomach of individuals infected with Helicobacter pylori induces macrophage recruitment and epithelial cell proliferation, which leads to chronic gastritis and mucosal atrophy during the early phase of gastric carcinogenesis [79,80]; subsequently, in gastric cancer patients, Hedgehog signaling activation is associated with the up-regulation of epithelial-to-mesenchymal transition (EMT) regulators and the resultant mesenchymal phenotype, chemotherapy resistance and poor prognosis [81]. Hedgehog signaling is important for the survival and expansion of hematological malignancies, such as acute leukemias, B-cell lymphomas, chronic lymphocytic leukemia (CLL) and CML, in mouse model experiments [82]. Hedgehog-GLI signaling promotes the tumorigenesis and drug resistance of lung squamous cell carcinoma in mouse xenograft experiments [83]. Hedgehog signaling promotes the migration and invasion of ovarian cancer cells by up-regulating integrin β4 and activating focal adhesion kinase (FAK) [84]. The hypoxic microenvironment induces HIF-1α-dependent SHH up-regulation in pancreatic cancer cells and subsequent desmoplastic reactions in stromal cells, which leads to a more aggressive phenotype and drug resistance [85]. Paracrine Hedgehog signaling contributes to human carcinogenesis through SMO-GLI signaling activation in the TME (Figure 3).

Hedgehog signaling inhibitors

SMO is a GPCR that associates with Gαi and Gα12 and activates their GTPase activity [16,17,86–88]. SMO harbors an extracellular Frizzled-like cysteine-rich domain, seven transmembrane domains and a cytoplasmic oxysterol-binding pocket [10–12] and shares structural similarities with Frizzled family members (FZD1–FZD10) that function as WNT receptors [87–89]. Oxysterols interact with the extracellular cysteine-rich domain and cytoplasmic binding pocket of SMO to activate Hedgehog signaling, whereas WNT ligands bind to the cysteine-rich domains of FZDs to activate WNT signaling. SMO was predicted to be an attractive target of pharmacological intervention because of (i) its oncogenic function as a downstream signal transducer in cancers with loss-of-function Patched alterations, (ii) its oncogenic function as a cancer driver in tumors with gain-of-function SMO mutations and (iii) its putative drug-binding pockets formed by hydrophobic transmembrane helices. Dozens of small-molecule compounds have been developed as investigational SMO inhibitors (Table 1).

Table 1
Hedgehog pathway inhibitors
Class Drug Alias Drug development stage Reference(s) 
SMO inhibitors Vismodegib GDC-0449 FDA approval for BCC patients [90–92
 Sonidegib Erismodegib or LDE225 FDA approval for BCC patients [93
 Glasdegib PF-04449913 FDA approval for AML patients [94–96
 Patidegib Topical formulation of saridegib or IPI-926 FDA breakthrough therapy for BCC patients [97
 Taladegib LY2940680 Phase I/II clinical trial [100
 BMS-833923 XL 139 Discontinued after Phase I/II clinical trial [101
 LEQ506  Phase I clinical trial completed in 2015 [102
 TAK-441  Phase I clinical trial completed in 2013 [103
 Itraconazole Antifungal drug Phase II clinical trial completed in 2014 [104,105
 Posaconazole Antifungal drug Preclinical study [106
 ALLO-1  Preclinical study [209
 AZD8542  Preclinical study [210
 CAT3 Prodrug of PF403 Preclinical study [211
 Cur-61414  Preclinical study [212
 Cyclopamine  Preclinical study [98
 DHCEO  Preclinical study [213
 DY131  Preclinical study [214
 MK-4101  Preclinical study [215
 MRT-83 and 92  Preclinical study [216
 PF-5274857  Preclinical study [217
 SANT-1  Preclinical study [99
 SEN450  Preclinical study [218
HHAT inhibitors RU-SKI 41  Preclinical study [110
 RU-SKI 43  Preclinical study [110
Anti-HH mAbs MEDI-5304 Anti-SHH/IHH mAb (6D7) Preclinical study [111
 3H8 Anti-SHH mAb Preclinical study [111
GLI inhibitors Arsenic trioxide Drug for the treatment of APL patients Phase I/II clinical trial ended in 2016 (n=5) [112,113
 Glabrescione B GLI–DNA-interaction inhibitor Preclinical study [114
 GANT61 GLI–DNA-interaction inhibitor Preclinical study [115,116
 Pirfenidone Drug for the treatment of IPF patients Preclinical study [117
 4SC-202 HDAC1/2/3 inhibitor Preclinical study [118
Class Drug Alias Drug development stage Reference(s) 
SMO inhibitors Vismodegib GDC-0449 FDA approval for BCC patients [90–92
 Sonidegib Erismodegib or LDE225 FDA approval for BCC patients [93
 Glasdegib PF-04449913 FDA approval for AML patients [94–96
 Patidegib Topical formulation of saridegib or IPI-926 FDA breakthrough therapy for BCC patients [97
 Taladegib LY2940680 Phase I/II clinical trial [100
 BMS-833923 XL 139 Discontinued after Phase I/II clinical trial [101
 LEQ506  Phase I clinical trial completed in 2015 [102
 TAK-441  Phase I clinical trial completed in 2013 [103
 Itraconazole Antifungal drug Phase II clinical trial completed in 2014 [104,105
 Posaconazole Antifungal drug Preclinical study [106
 ALLO-1  Preclinical study [209
 AZD8542  Preclinical study [210
 CAT3 Prodrug of PF403 Preclinical study [211
 Cur-61414  Preclinical study [212
 Cyclopamine  Preclinical study [98
 DHCEO  Preclinical study [213
 DY131  Preclinical study [214
 MK-4101  Preclinical study [215
 MRT-83 and 92  Preclinical study [216
 PF-5274857  Preclinical study [217
 SANT-1  Preclinical study [99
 SEN450  Preclinical study [218
HHAT inhibitors RU-SKI 41  Preclinical study [110
 RU-SKI 43  Preclinical study [110
Anti-HH mAbs MEDI-5304 Anti-SHH/IHH mAb (6D7) Preclinical study [111
 3H8 Anti-SHH mAb Preclinical study [111
GLI inhibitors Arsenic trioxide Drug for the treatment of APL patients Phase I/II clinical trial ended in 2016 (n=5) [112,113
 Glabrescione B GLI–DNA-interaction inhibitor Preclinical study [114
 GANT61 GLI–DNA-interaction inhibitor Preclinical study [115,116
 Pirfenidone Drug for the treatment of IPF patients Preclinical study [117
 4SC-202 HDAC1/2/3 inhibitor Preclinical study [118

Abbreviations: AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; FDA, U.S. Food and Drug Administration; HH, Hedgehog; IPF, idiopathic pulmonary fibrosis; mAb, monoclonal antibody.

Representative SMO inhibitors in the field of clinical oncology are vismodegib {2-chloro-N-(4-chloro-3-pyridin-2-ylphenyl)-4-methylsulfonylbenzamide} [90–92], sonidegib {N-[6-[(2S,6R)-2,6-dimethylmorpholin-4-yl]pyridin-3-yl]-2-methyl-3-[4-(trifluoromethoxy)phenyl]benzamide} [93], glasdegib {1-[(2R,4R)-2-(1H-benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl]-3-(4-cyanophenyl)urea} and patidegib {N-[(3R,3′R,3′aS,4aR,6′S,6aR,6bS,7′aR,9S,12aS,12bS)-3′,6′,11,12b-tetramethylspiro[1,2,3,4,4a,5,6,6a,6b,7, 8,10,12,12a-tetradecahydronaphtho[2,1-a]azulene-9,2′-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridine]-3-yl] methanesulfonamide;hydrochloride} [97]. Patidegib is a topical SMO inhibitor in a gel formulation that was granted breakthrough therapy designation and orphan drug designation for the treatment of BCNS patients by the U.S. Food and Drug Administration (FDA). Vismodegib and sonidegib are oral SMO inhibitors that are approved for the treatment of BCC patients, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML) (Table 1).

Cyclopamine {(3S,3′R,3′aS,6′S,6aS,6bS,7′aR,9R,11aS,11bR)-3′,6′,10,11b-tetramethylspiro[2,3,4,6,6a,6b,7,8,11, 11a-decahydro-1H-benzo[a]fluorene-9,2′-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridine]-3-ol} [98], SANT-1 {(E)-N-(4-benzylpiperazin-1-yl)-1-(3,5-dimethyl-1-phenylpyrazol-4-yl)methanimine} [99], taladegib {4-fluoro-N-methyl-N-[1-[4-(2-methylpyrazol-3-yl)phthalazin-1-yl]piperidin-4-yl]-2-(trifluoromethyl)benzamide} [100], BMS-833923 {N-[2-methyl-5-(methylaminomethyl)phenyl]-4-[(4-phenylquinazolin-2-yl)amino]benzamide} [101], LEQ506 {2-[5-[(2R)-4-(6-benzyl-4,5-dimethylpyridazin-3-yl)-2-methylpiperazin-1-yl]pyrazin-2-yl]propan-2 -ol} [102], TAK-441 {6-ethyl-N-[1-(2-hydroxyacetyl)piperidin-4-yl]-1-methyl-4-oxo-5-phenacyl-3-(2,2,2- trifluoroethoxy)pyrrolo[3,2-c]pyridine-2-carboxamide} [103] and other compounds are investigational SMO inhibitors in preclinical studies or early phase clinical trials (Table 1). Itraconazole {2-butan-2-yl-4-[4-[4-[4-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1, 3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one} [104,105] and posaconazole {4-[4-[4-[4-[[(3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4-triazol-1-ylmethyl)oxolan-3-yl] methoxy]phenyl]piperazin-1-yl]phenyl]-2-[(2S,3S)-2-hydroxypentan-3-yl]-1,2,4-triazol-3-one} [106] are antifungal drugs in clinical use that also inhibit SMO (Table 1). Crystal structure analyses of SMO in complex with cyclopamine, SANT-1, taladegib or the investigational SMO agonist HH-Ag1.5/SAG1.5 {3-chloro-4,7-difluoro-N-(4-(methylamino)cyclohexyl)-N-(3-(pyridin-4-yl)benzyl)benzo[b]thiophene-2-carboxamide} revealed that the transmembrane helices of SMO form a long, narrow cavity with a small entrance from the extracellular space and multiple drug-binding pockets [107–109]. R400 in the 5th transmembrane (5TM) domain, D473 in the 6TM domain and E518 in the 7TM domain are key amino acid residues in the drug-binding cavity that undergo remodeling during agonist-induced SMO activation. The acquired D473H SMO mutation causes cross-resistance to vismodegib and sonidegib but not to taladegib due to the slightly distinct mode of binding to the long, narrow cavity formed by the SMO transmembrane helices.

HHAT and Hedgehog ligands are alternative targets for Hedgehog signaling blockade (Table 1). RU-SKI 41 and RU-SKI 43 are small-molecule HHAT inhibitors that abrogate the N-terminal palmitoylation of SHH, and RU-SKI 43 repressed GLI1 activation and proliferation in a pancreatic cancer cell line with autocrine Hedgehog signaling [110]. MEDI-5304 (6D7) and 3H8 are fully human monoclonal antibodies (mAbs) that neutralize SHH/IHH and SHH, respectively, and MEDI-5304 showed anti-tumor activity in a mouse model of tumorigenesis that was dependent on paracrine Hedgehog signaling [111]. Because of their inability to directly block Hedgehog/GLI signaling activation induced by genetic alterations in Patched, SMO and other downstream signaling components, HHAT inhibitors and anti-HH mAbs remain in the preclinical research stage.

GLI is the most important target for the treatment of Hedgehog/GLI signaling-related human cancer because Hedgehog and other oncogenic signaling cascades converge on the GLI transcription network (Figure 1). Arsenic trioxide [112,113], glabrescione B {3-[3,4-bis(3-methylbut-2-enoxy)phenyl]-5,7-dimethoxychromen-4-one} [114], GANT61 {2-[[3-[[2-(dimethylamino)phenyl]methyl]-2-pyridin-4-yl-1,3-diazinan-1-yl]methyl]-N,N-dimethylaniline} [115,116], pirfenidone {5-methyl-1-phenylpyridin-2-one} [117] and 4SC-202 {(E)-N-(2-aminophenyl)-3-[1-[4-(1-methylpyrazol-4-yl)phenyl]sulfonylpyrrol-3-yl]prop-2-enamide; 4-methylbenzenesulfonic acid} [118] have been reported to inhibit GLI function (Table 1). Glabrescione B and GANT61 abrogate GLI-dependent transcription and tumorigenesis through direct blockade of the interaction between GLI1 and target gene promoter/enhancer regions [114–116]. 4SC-202 is an investigational histone deacetylase inhibitor that obstructs GLI-dependent transcription and tumorigenesis by tethering GLI in an acetylated state [118]. Arsenic trioxide and pirfenidone are approved drugs for the treatment of patients with acute promyelocytic leukemia (APL) and idiopathic pulmonary fibrosis (IPF), respectively, and they inhibit the GLI transcription network through GLI2 destabilization [112,117]. Because pirfenidone inhibits Hedgehog- and TGF-β-induced fibrosis through abrogation of the GLI2 transcription network, it is expected to be applicable for the treatment of cancer patients with SHH-induced paracrine signaling activation and fibrosis. However, because GLI is a challenging target for pharmacological intervention, most GLI inhibitors, except arsenic trioxide, remain in the preclinical stage.

Clinical trials of SMO inhibitor monotherapy

Advanced BCC, including locally advanced BCC and metastatic BCC, is predicted to be the ideal target of SMO inhibitors because SMO is aberrantly activated in 70–90% of sporadic BCC cases owing to PTCH1 mutations [119–121]. Following the Phase I clinical trials of vismodegib [91,92] and sonidegib [93] that confirmed their anti-tumor activity and assessed safety and pharmacokinetics issues, Phase II clinical trials of these SMO inhibitors in advanced BCC patients were conducted [122–124]. The ERIVANCE BCC study (ClinicalTrials.gov Identifier: NCT00833417) revealed that the investigator-assessed objective response rate (ORR) of vismodegib was 60.3% in locally advanced BCC and 48.5% in metastatic BCC [122]. The STEVIE study (NCT01367665) reported investigator-assessed ORRs for vismodegib of 68.5% in locally advanced BCC and 36.9% in metastatic BCC [123]. The BOLT study (NCT01327053) revealed that the ORR of sonidegib was 71.2% (investigator assessed) and 56.1% (centrally assessed) in locally advanced BCC and 23.1% (investigator assessed) and 7.7% (centrally assessed) in metastatic BCC [124]. Muscle spasms, alopecia and dysgeusia were common adverse events of these two SMO inhibitors in BCC patients [122–124]. Because adverse events potentially decrease quality of life and lead to treatment discontinuation and tumor recurrence, intermittent dosing schedules and therapeutic relief of muscle spasms are possible options to reduce adverse events [125]. Topical application rather than oral administration is another option to reduce systemic effects, and Phase II clinical trials of topical patidegib were performed for the treatment of sporadic BCC (NCT02828111) and hereditary BCC (NCT02762084). Vismodegib is approved for the treatment of locally advanced BCC and metastatic BCC, whereas sonidegib is approved for the treatment of locally advanced BCC.

SHH-subgroup medulloblastoma was initially predicted as the second best target of SMO inhibitors due to frequent somatic alterations in the Hedgehog signaling components. Because the anti-tumor activity of vismodegib and sonidegib in medulloblastoma was confirmed in Phase I clinical trials [90,93], Phase II clinical trials of these SMO inhibitors were conducted [126,127]. The PBTC-025B (NCT00939484) and PBTC-032 (NCT01239316) studies reported ORRs for vismodegib in SHH-subgroup medulloblastoma patients of 15% and 8%, respectively [126]. A Phase I study in pediatric brain and solid tumors combined with a Phase II study in relapsed medulloblastoma (NCT01125800) revealed that the ORR of sonidegib was 7% (5/76) in the entire population and 50% (5/10) in Hedgehog signature-positive cases and that only medulloblastoma patients responded to sonidegib [127]. SHH-subgroup medulloblastomas are further divided into several subtypes based on the presence of PTCH1 alterations, SUFU alterations and TP53/GLI2/MYCN alterations [62,128]. Medulloblastoma patient-derived xenograft (PDX) model with PTCH1 loss-of-function mutation was sensitive to sonidegib, whereas that with SUFU deletion and that with TP53 mutation and MYCN amplification were both resistant to sonidegib. The prognosis of medulloblastoma patients with PTCH1 focal deletion was reported to be better than that of those with GLI2 or MYCN amplification [129]. The ORR of SMO inhibitors in medulloblastoma patients was much lower than expected due to inter-tumor heterogeneity within the SHH subgroup and a relatively lower rate of PTCH1 alterations in SHH-subgroup medulloblastoma than in BCC. SMO inhibitors are not yet approved for the treatment of medulloblastoma patients.

Other cancers were initially predicted as targets of SMO inhibitor monotherapy based on preclinical studies that showed the anti-proliferative effects of high-concentration cyclopamine on SHH-overexpressing cancer cells in vitro and the anti-tumorigenic effects of SMO inhibitors on SHH-dependent mouse tumors [130,131]. However, Phase II clinical trials of vismodegib monotherapy in patients with B-cell lymphoma or CLL (NCT01944943) [132], chondrosarcoma (NCT01267955) [133] and ovarian cancer (NCT00739661) [134] failed to show the expected anti-tumor activity. The activity of SMO inhibitors in patients with SHH-dependent cancer might be context dependent and not as robust as the activity in BCC patients because tumor-derived Hedgehog ligands promote tumorigenesis mainly through paracrine effects on the TME [75]. Patient selection based on biomarkers is necessary to enhance the benefits of SMO inhibitor monotherapy for Hedgehog-related cancers other than BCC and SHH-subgroup medulloblastoma. Indeed, ongoing Phase II clinical trials of SMO inhibitors are recruiting cancer patients based on predictive biomarkers, such as genetic alterations in Hedgehog signaling components (NCT02091141 and NCT02465060) and SMO overexpression in tumor cells (NCT03052478).

Mechanisms of resistance to SMO inhibitors and combination strategies to overcome resistance

Targeted therapies are promising options for cancer patients; however, resistance and recurrence are difficult to avoid due to intra-tumor heterogeneity and tumor cell plasticity [135,136]. Compilation of the results of clinical trials revealed that acquired SMO mutations (T241M, W281C, V321M, I408V, L412F, A459V, C469Y, S533N and W535L), SUFU deletions, and GLI2 and MYCN amplification lead to resistance to SMO inhibitors in cancer patients [62,137–139]. Translational studies revealed that acquired Smo mutations, loss-of-function Sufu mutations, and Gli2 and Ccnd1 gene amplification lead to resistance to SMO inhibitors in mouse models [140–142]. The MTOR-S6K1, MEK-ERK and SRF signaling cascades that activate GLI-dependent transcription [17,19–21] and canonical WNT/β-catenin signaling that supports the self-renewal of CSCs [136,143,144] also give rise to the resistance to SMO inhibitors. These facts indicate that gain-of-function SMO mutations, genetic alterations in downstream signaling components, Hedgehog signaling-independent GLI activation and canonical WNT/β-catenin signaling activation all induce the resistance to SMO inhibitors (Figure 4). GLI inhibitors, canonical WNT/β-catenin signaling inhibitors and combination therapies are rational choices to overcome drug resistance or recurrence after treatment with SMO inhibitors.

Mechanisms of resistance to SMO inhibitors

Figure 4
Mechanisms of resistance to SMO inhibitors

Acquired mutations (Mut) in the SMO gene (T241M, W281C, V321M, I408V, L412F, A459V, C469Y, D473G/H, Q477E, S533N and W535L), loss-of-function mutations or deletions (LoF Mut or Del) in the SUFU gene and amplification (Amp) of the GLI2 gene give rise to resistance to SMO inhibitors. By-passing GLI activation and canonical WNT/β-catenin signaling activation can also lead to resistance to SMO inhibitors. GLI and β-catenin are rational drug targets to overcome resistance to SMO inhibitors; however, GLI and β-catenin inhibitors are in preclinical studies or early stage clinical trials.

Figure 4
Mechanisms of resistance to SMO inhibitors

Acquired mutations (Mut) in the SMO gene (T241M, W281C, V321M, I408V, L412F, A459V, C469Y, D473G/H, Q477E, S533N and W535L), loss-of-function mutations or deletions (LoF Mut or Del) in the SUFU gene and amplification (Amp) of the GLI2 gene give rise to resistance to SMO inhibitors. By-passing GLI activation and canonical WNT/β-catenin signaling activation can also lead to resistance to SMO inhibitors. GLI and β-catenin are rational drug targets to overcome resistance to SMO inhibitors; however, GLI and β-catenin inhibitors are in preclinical studies or early stage clinical trials.

GLI inhibitors, including GLI–DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202), were reported to block the GLI transcription network and tumorigenesis in preclinical studies [112–118]. Glabrescione B, GANT61 and 4SC-202 are investigational drugs without safety data in humans, whereas arsenic trioxide and pirfenidone are in clinical use for the treatment of APL and IPF patients, respectively. However, the clinical benefits of GLI inhibitors in patients with Hedgehog/GLI-driven cancer remain unclear.

WNT signals are transduced through the canonical WNT/β-catenin signaling cascade, as well as through the WNT/stabilization of proteins (STOP), WNT/planar cell polarity (PCP), WNT/GPCR and WNT/receptor tyrosine kinase (RTK) signaling cascades [145]. Broad-spectrum WNT signaling inhibitors (ETC-159, ipafricept/OMP-54F28, rosmantuzumab/OMP-131R10, vantictumab/OMP-18R5 and WNT974/LGK974) and β-catenin protein–protein-interaction inhibitors (E7386 and PRI-724) are in the earlier stages of clinical trials [146]. In contrast, the Hedgehog/GLI and WNT/β-catenin signaling cascades engage in synergistic or antagonistic cross-talk in a cellular context-dependent manner [147,148]. Residual BCC tumors that remained after SMO inhibitor treatment were further reduced or eradicated by WNT signaling blockade in mouse models [143,144]. However, because GLI1-positive intestinal stromal cells produce WNT ligands, such as WNT2 and WNT2B, to support intestinal homeostasis through canonical WNT/β-catenin signaling in intestinal epithelial stem cells [149–151], dual blockade of the Hedgehog/GLI and WNT/β-catenin cascades might induce more severe gastrointestinal toxicity in cancer patients than monotherapy targeting Hedgehog/GLI signaling.

Combination with chemotherapy or a tyrosine kinase inhibitor is a rational strategy to enhance the benefits of SMO inhibitors in cancer patients because an SMO inhibitor combined with a BCR-ABL inhibitor (dasatinib, nilotinib or ponatinib) [152–154], decitabine [155], gemcitabine [156] or paclitaxel [33] showed synergistic anti-tumor effects in mouse models of CML, AML, pancreatic cancer and TNBC, respectively. A randomized Phase II clinical trial of vismodegib with or without gemcitabine in pancreatic cancer patients (NCT01064622) [157] and a randomized Phase II clinical trial of vismodegib or placebo with FOLFOX or FOLFIRI and bevacizumab in colorectal cancer patients (NCT00636610) [158] both failed to show clinical activity, whereas a Phase II clinical trial of vismodegib with paclitaxel, epirubicin and cyclophosphamide in TNBC patients (NCT02694224) is ongoing. In contrast, a Phase II clinical trial of glasdegib with cytarabine and daunorubicin (NCT01546038) showed clinical activity in patients with untreated AML or high-risk myelodysplastic syndromes [159], which led to the FDA approval of glasdegib for the treatment of AML patients. Chaudhry and colleagues [155] speculated that decitabine induces GLI3 derepression and that subsequent GLI3-dependent AKT1 repression can enhance the anti-leukemic effects of glasdegib. A randomized Phase III clinical trial of glasdegib with chemotherapy (NCT03416179) is ongoing to test for the benefits of combinations of chemotherapy with SMO inhibitors in patients with untreated AML.

Combination immuno-oncology therapy is a hot topic in the field of clinical oncology [160–166]. Immune checkpoint inhibitors targeting immunosuppressive receptors on T cells, such as CTLA4, LAG3, PD-1 and TIM3, have been developed as investigational drugs, among which anti-PD-1 mAbs (cemiplimab, nivolumab and pembrolizumab), anti-PD-L1 mAbs (atezolizumab, avelumab, durvalumab) and an anti-CTLA4 mAb (ipilimumab) are approved for the treatment of cancer patients (https://www.cancer.gov/about-cancer/treatment/drugs). Because genetic alterations in tumor cells and epigenetic alterations in tumor, immune or stromal cells dictate anti-tumor immunity in the TME [166,167], the benefits of immune checkpoint inhibitors are striking in cancer patients with inflamed-type immune evasion characterized by increased tumor infiltration of effector T cells and PD-L1 up-regulation but severely limited in those with non-inflamed-type immune evasion associated with increased infiltrations of M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Effects of anti-PD-1 mAb are improved by combination with other drugs, such as anti-CTLA4 mAb, CDK4/6 inhibitor and VEGF signaling blockade therapy [168–171].

Hedgehog/GLI signaling activation elicited non-inflamed-type immune evasion with myeloid infiltration in the TME of mouse models of SHH-subgroup medulloblastoma [36–38,172] though tumor–stromal interactions and subsequent activation of the TGF-β and VEGF signaling cascades (Figure 3). In contrast, Hedgehog/GLI signaling activation induced IFN-γ production by peripheral CD4+ T cells [173], and IFN-γ induced PD-L1 up-regulation in SHH-subgroup medulloblastoma [174]. SHH silencing in rat models of metastatic spine tumors enhanced anti-tumor immunity [175] and SMO inhibitor treatment in BCC patients gave rise to an immune-inflamed TME [176]. These findings indicate that SMO inhibitors can reprogram non-immune-inflamed tumors into immune-inflamed tumors. PD-L1 is expressed on tumor cells or tumor-infiltrating lymphocytes in approximately 90% of BCC samples [177], and pembrolizumab showed anti-tumor effects in several cases of SMO inhibitor-resistant BCC [178–181]. A Phase I/II clinical trial of pembrolizumab with or without vismodegib in BCC patients (NCT02690948) is ongoing to prove the concept of combination therapy with an immune checkpoint inhibitor and an SMO inhibitor (Figure 5).

Combination immuno-oncology therapy with SMO inhibitors

Figure 5
Combination immuno-oncology therapy with SMO inhibitors

The activation of Hedgehog signaling gives rise to non-inflamed-type immune evasion through (i) the activation and proliferation of cancer-associated fibroblasts, (ii) VEGF-dependent tumor angiogenesis and the creation of a hypoxic TME, (iii) the cytokine/chemokine-dependent expansion or infiltration of M2-TAMs and MDSCs, and (iv) the TGF-β-dependent expansion and CCL17/CCL22/CCL28-induced infiltration of Treg cells. SMO inhibitors have anti-tumor effects against Hedgehog/GLI-dependent tumor cells and can remodel non-inflamed-type immune evasion into inflamed-type immune evasion, which shows infiltrations of CD4+ helper T cells, CD8+ cytotoxic T cells and natural killer cells. In contrast, immune checkpoint inhibitors, such as atezolizumab, avelumab, cemiplimab, durvalumab, nivolumab and pembrolizumab, elicit anti-tumor effects by blocking the PD-L1/PD-1 immunosuppressive signaling in immune-inflamed tumors. Although PD-L1 is expressed in 90% of BCC tumors, the benefit of immune checkpoint inhibitor monotherapy is limited by the immunosuppressive TME. A Phase I/II clinical trial of pembrolizumab with or without vismodegib for the treatment of BCC patients (NCT02690948) is ongoing to prove the concept of combination therapy with an immune checkpoint inhibitor and an SMO inhibitor.

Figure 5
Combination immuno-oncology therapy with SMO inhibitors

The activation of Hedgehog signaling gives rise to non-inflamed-type immune evasion through (i) the activation and proliferation of cancer-associated fibroblasts, (ii) VEGF-dependent tumor angiogenesis and the creation of a hypoxic TME, (iii) the cytokine/chemokine-dependent expansion or infiltration of M2-TAMs and MDSCs, and (iv) the TGF-β-dependent expansion and CCL17/CCL22/CCL28-induced infiltration of Treg cells. SMO inhibitors have anti-tumor effects against Hedgehog/GLI-dependent tumor cells and can remodel non-inflamed-type immune evasion into inflamed-type immune evasion, which shows infiltrations of CD4+ helper T cells, CD8+ cytotoxic T cells and natural killer cells. In contrast, immune checkpoint inhibitors, such as atezolizumab, avelumab, cemiplimab, durvalumab, nivolumab and pembrolizumab, elicit anti-tumor effects by blocking the PD-L1/PD-1 immunosuppressive signaling in immune-inflamed tumors. Although PD-L1 is expressed in 90% of BCC tumors, the benefit of immune checkpoint inhibitor monotherapy is limited by the immunosuppressive TME. A Phase I/II clinical trial of pembrolizumab with or without vismodegib for the treatment of BCC patients (NCT02690948) is ongoing to prove the concept of combination therapy with an immune checkpoint inhibitor and an SMO inhibitor.

Conclusion

Hedgehog signaling cascades are activated in human cancer through genetic alterations in tumor cells and paracrine signaling in the TME. The SMO inhibitors vismodegib and sonidegib are approved for the treatment of BCC patients, and glasdegib is approved for the treatment of AML patients. However, genetic alterations in SMO or downstream signaling components, by-passing GLI activation and WNT/β-catenin signaling activation lead to resistance or recurrence. Clinical trials of SMO inhibitors in combination with chemotherapy or immune checkpoint inhibitors are ongoing to further enhance the clinical benefits of Hedgehog signaling blockade.

Competing interests

The author declares that there are no competing interests associated with the manuscript.

Funding

This work was supported in part by a grant‐in‐aid from M.K. Fund for the Knowledge-Base Project.

Author contribution

M.K. searched the literature and wrote the manuscript.

Abbreviations

     
  • AML

    acute myeloid leukemia

  •  
  • APL

    acute promyelocytic leukemia

  •  
  • BCC

    basal cell carcinoma

  •  
  • BCNS

    basal cell nevus syndrome

  •  
  • CLL

    chronic lymphocytic leukemia

  •  
  • CML

    chronic myeloid leukemia

  •  
  • CSC

    cancer stem cell

  •  
  • DHH

    Desert Hedgehog

  •  
  • FDA

    Food and Drug Administration

  •  
  • GPCR

    G protein-coupled receptor

  •  
  • HHAT

    Hedgehog acyltransferase

  •  
  • IHH

    Indian Hedgehog

  •  
  • mAb

    monoclonal antibody

  •  
  • IPF

    idiopathic pulmonary fibrosis

  •  
  • MDSC

    myeloid-derived suppressor cell

  •  
  • PTCH

    Patched

  •  
  • SHH

    Sonic Hedgehog

  •  
  • SMO

    Smoothened

  •  
  • SRF

    serum response factor

  •  
  • TME

    tumor microenvironment

  •  
  • TNBC

    triple-negative breast cancer

References

References
1.
Ingham
P.W.
and
McMahon
A.P.
(
2001
)
Hedgehog signaling in animal development: paradigms and principles
.
Genes Dev.
15
,
3059
3087
[PubMed]
2.
Lum
L.
and
Beachy
P.A.
(
2004
)
The Hedgehog response network: sensors, switches, and routers
.
Science
304
,
1755
1759
[PubMed]
3.
Hooper
J.E.
and
Scott
M.P.
(
2005
)
Communicating with Hedgehogs
.
Nat. Rev. Mol. Cell Biol.
6
,
306
317
[PubMed]
4.
Katoh
Y.
and
Katoh
M.
(
2009
)
Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation
.
Curr. Mol. Med.
9
,
873
886
[PubMed]
5.
Dessaud
E.
,
McMahon
A.P.
and
Briscoe
J.
(
2008
)
Pattern formation in the vertebrate neural tube: a Sonic hedgehog morphogen-regulated transcriptional network
.
Development
135
,
2489
2503
[PubMed]
6.
Briscoe
J.
and
Thérond
P.P.
(
2013
)
The mechanisms of Hedgehog signalling and its roles in development and disease
.
Nat. Rev. Mol. Cell Biol.
14
,
416
429
[PubMed]
7.
Beachy
P.A.
,
Hymowitz
S.G.
,
Lazarus
R.A.
,
Leahy
D.J.
and
Siebold
C.
(
2010
)
Interactions between Hedgehog proteins and their binding partners come into view
.
Genes Dev.
24
,
2001
2012
[PubMed]
8.
Qi
X.
,
Schmiege
P.
,
Coutavas
E.
,
Wang
J.
and
Li
X.
(
2018
)
Structures of human Patched and its complex with native palmitoylated sonic hedgehog
.
Nature
560
,
128
132
[PubMed]
9.
Veenstra
V.L.
,
Dingjan
I.
,
Waasdorp
C.
,
Damhofer
H.
,
van der Wal
A.C.
,
van Laarhoven
H.W.
et al. .
(
2018
)
Patched-2 functions to limit Patched-1 deficient skin cancer growth
.
Cell. Oncol.
41
,
427
437
10.
Xiao
X.
,
Tang
J.J.
,
Peng
C.
,
Wang
Y.
,
Fu
L.
,
Qiu
Z.P.
et al. .
(
2017
)
Cholesterol modification of Smoothened is required for Hedgehog signaling
.
Mol. Cell
66
,
154
162
[PubMed]
11.
Huang
P.
,
Zheng
S.
,
Wierbowski
B.M.
,
Kim
Y.
,
Nedelcu
D.
,
Aravena
L.
et al. .
(
2018
)
Structural basis of Smoothened activation in Hedgehog signaling
.
Cell
174
,
312
324
[PubMed]
12.
Raleigh
D.R.
,
Sever
N.
,
Choksi
P.K.
,
Sigg
M.A.
,
Hines
K.M.
,
Thompson
B.M.
et al. .
(
2018
)
Cilia-associated oxysterols activate Smoothened
.
Mol. Cell
72
,
316
327
[PubMed]
13.
Wu
X.
,
Zhang
L.S.
,
Toombs
J.
,
Kuo
Y.C.
,
Piazza
J.T.
,
Tuladhar
R.
et al. .
(
2017
)
Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor
.
Nat. Cell Biol.
19
,
1226
1236
[PubMed]
14.
Infante
P.
,
Faedda
R.
,
Bernardi
F.
,
Bufalieri
F.
,
Lospinoso Severini
L.
et al. .
(
2018
)
Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis
.
Nat. Commun.
9
,
976
[PubMed]
15.
Liu
H.
,
Kiseleva
A.A.
and
Golemis
E.A.
(
2018
)
Ciliary signalling in cancer
.
Nat. Rev. Cancer
18
,
511
524
[PubMed]
16.
Ayers
K.L.
and
Thérond
P.P.
(
2010
)
Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling
.
Trends Cell Biol.
20
,
287
298
[PubMed]
17.
Ho Wei
L.
,
Arastoo
M.
,
Georgiou
I.
,
Manning
D.R.
and
Riobo-Del Galdo
N.A.
(
2018
)
Activation of the Gi protein-RHOA axis by non-canonical Hedgehog signaling is independent of primary cilia
.
PLoS ONE
13
,
e0203170
[PubMed]
18.
Whitson
R.J.
,
Lee
A.
,
Urman
N.M.
,
Mirza
A.
,
Yao
C.Y.
,
Brown
A.S.
et al. .
(
2018
)
Noncanonical hedgehog pathway activation through SRF-MKL1 promotes drug resistance in basal cell carcinomas
.
Nat. Med.
24
,
271
281
[PubMed]
19.
Aberger
F.
and
Ruiz i Altaba
A.
(
2014
)
Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy
.
Semin. Cell Dev. Biol.
33
,
93
104
[PubMed]
20.
Wang
Y.
,
Ding
Q.
,
Yen
C.J.
,
Xia
W.
,
Izzo
J.G.
,
Lang
J.Y.
et al. .
(
2012
)
The crosstalk of mTOR/S6K1 and Hedgehog pathways
.
Cancer Cell
21
,
374
387
[PubMed]
21.
Po
A.
,
Silvano
M.
,
Miele
E.
,
Capalbo
C.
,
Eramo
A.
,
Salvati
V.
et al. .
(
2017
)
Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma
.
Oncogene
36
,
4641
4652
[PubMed]
22.
Yoo
Y.A.
,
Kang
M.H.
,
Lee
H.J.
,
Kim
B.H.
,
Park
J.K.
,
Kim
H.K.
et al. .
(
2011
)
Sonic Hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer
.
Cancer Res.
71
,
7061
7070
[PubMed]
23.
Fan
Y.H.
,
Ding
J.
,
Nguyen
S.
,
Liu
X.J.
,
Xu
G.
,
Zhou
H.Y.
et al. .
(
2016
)
Aberrant hedgehog signaling is responsible for the highly invasive behavior of a subpopulation of hepatoma cells
.
Oncogene
35
,
116
124
[PubMed]
24.
Oladapo
H.O.
,
Tarpley
M.
,
Sauer
S.J.
,
Addo
K.A.
,
Ingram
S.M.
,
Strepay
D.
et al. .
(
2017
)
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells
.
Cancer Lett.
411
,
136
149
[PubMed]
25.
He
M.
,
Fu
Y.
,
Yan
Y.
,
Xiao
Q.
,
Wu
H.
,
Yao
W.
et al. .
(
2015
)
The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients
.
Clin. Sci.
129
,
809
822
[PubMed]
26.
Cazet
A.S.
,
Hui
M.N.
,
Elsworth
B.L.
,
Wu
S.Z.
,
Roden
D.
,
Chan
C.L.
et al. .
(
2018
)
Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer
.
Nat. Commun.
9
,
2897
[PubMed]
27.
Zhao
C.
,
Chen
A.
,
Jamieson
C.H.
,
Fereshteh
M.
,
Abrahamsson
A.
,
Blum
J.
et al. .
(
2009
)
Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia
.
Nature
458
,
776
779
[PubMed]
28.
Fan
F.
,
Wang
R.
,
Boulbes
D.R.
,
Zhang
H.
,
Watowich
S.S.
,
Xia
L.
et al. .
(
2018
)
Macrophage conditioned medium promotes colorectal cancer stem cell phenotype via the hedgehog signaling pathway
.
PLoS ONE
13
,
e0190070
[PubMed]
29.
Tang
Y.A.
,
Chen
Y.F.
,
Bao
Y.
,
Mahara
S.
,
Yatim
S.M.J.M.
,
Oguz
G.
et al. .
(
2018
)
Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer
.
Proc. Natl. Acad. Sci. U.S.A.
115
,
E5990
E5999
30.
Xu
M.
,
Gong
A.
,
Yang
H.
,
George
S.K.
,
Jiao
Z.
,
Huang
H.
et al. .
(
2015
)
Sonic Hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/Musashi-1(+) gastric cancer stem cells
.
Cancer Lett.
369
,
124
133
[PubMed]
31.
Miele
E.
,
Po
A.
,
Begalli
F.
,
Antonucci
L.
,
Mastronuzzi
A.
,
Marras
C.E.
et al. .
(
2017
)
β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells
.
BMC Cancer
17
,
488
[PubMed]
32.
Chinchilla
P.
,
Xiao
L.
,
Kazanietz
M.G.
and
Riobo
N.A.
(
2010
)
Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways
.
Cell Cycle
9
,
570
579
[PubMed]
33.
Di Mauro
C.
,
Rosa
R.
,
D’Amato
V.
,
Ciciola
P.
,
Servetto
A.
,
Marciano
R.
et al. .
(
2017
)
Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers
.
Br. J. Cancer
116
,
1425
1435
[PubMed]
34.
Bailey
J.M.
,
Swanson
B.J.
,
Hamada
T.
,
Eggers
J.P.
,
Singh
P.K.
,
Caffery
T.
et al. .
(
2008
)
Sonic Hedgehog promotes desmoplasia in pancreatic cancer
.
Clin. Cancer Res.
14
,
5995
6004
[PubMed]
35.
Chung
S.I.
,
Moon
H.
,
Ju
H.L.
,
Cho
K.J.
,
Kim
D.Y.
,
Han
K.H.
et al. .
(
2016
)
Hepatic expression of Sonic hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model
.
J. Hepatol.
64
,
618
627
[PubMed]
36.
Griesinger
A.M.
,
Birks
D.K.
,
Donson
A.M.
,
Amani
V.
,
Hoffman
L.M.
,
Waziri
A.
et al. .
(
2013
)
Characterization of distinct immunophenotypes across pediatric brain tumor types
.
J. Immunol.
191
,
4880
4888
[PubMed]
37.
Abad
C.
,
Nobuta
H.
,
Li
J.
,
Kasai
A.
,
Yong
W.H.
and
Waschek
J.A.
(
2014
)
Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma
.
J. Leukoc. Biol.
95
,
357
367
[PubMed]
38.
Gate
D.
,
Danielpour
M.
,
Rodriguez
J.
Jr
,
Kim
G.B.
,
Levy
R.
,
Bannykh
S.
et al. .
(
2014
)
T-cell TGF-β signaling abrogation restricts medulloblastoma progression
.
Proc. Natl. Acad. Sci. U.S.A.
111
,
E3458
E3466
39.
Han
L.
,
Ma
J.
,
Duan
W.
,
Zhang
L.
,
Yu
S.
,
Xu
Q.
et al. .
(
2016
)
Pancreatic stellate cells contribute pancreatic cancer pain via activation of SHH signaling pathway
.
Oncotarget
7
,
18146
18158
[PubMed]
40.
Liu
S.
,
Lv
Y.
,
Wan
X.X.
,
Song
Z.J.
,
Liu
Y.P.
,
Miao
S.
et al. .
(
2018
)
Hedgehog signaling contributes to bone cancer pain by regulating sensory neuron excitability in rats
.
Mol. Pain
14
,
1744806918767560
[PubMed]
41.
Louro
I.D.
,
Bailey
E.C.
,
Li
X.
,
South
L.S.
,
McKie-Bell
P.R.
,
Yoder
B.K.
et al. .
(
2002
)
Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation
.
Cancer Res.
62
,
5867
5873
[PubMed]
42.
Asai
J.
,
Takenaka
H.
,
Kusano
K.F.
,
Ii
M.
,
Luedemann
C.
,
Curry
C.
et al. .
(
2006
)
Topical Sonic Hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling
.
Circulation
113
,
2413
2424
[PubMed]
43.
Hu
L.
,
Lin
X.
,
Lu
H.
,
Chen
B.
and
Bai
Y.
(
2015
)
An overview of Hedgehog signaling in fibrosis
.
Mol. Pharmacol.
87
,
174
182
[PubMed]
44.
Valenti
G.
,
Quinn
H.M.
,
Heynen
G.J.J.E.
,
Lan
L.
,
Holland
J.D.
,
Vogel
R.
et al. .
(
2017
)
Cancer stem cells regulate cancer-associated fibroblasts via activation of Hedgehog signaling in mammary gland tumors
.
Cancer Res.
77
,
2134
2147
[PubMed]
45.
Tian
L.
,
Deng
Z.
,
Xu
L.
,
Yang
T.
,
Yao
W.
,
Ji
L.
et al. .
(
2018
)
Downregulation of ASPP2 promotes gallbladder cancer metastasis and macrophage recruitment via aPKC-ι/GLI1 pathway
.
Cell Death Dis.
9
,
1115
[PubMed]
46.
Collins
F.S.
and
Varmus
H.
(
2015
)
A new initiative on precision medicine
.
N. Engl. J. Med.
372
,
793
795
[PubMed]
47.
Parsons
H.A.
,
Beaver
J.A.
,
Cimino-Mathews
A.
,
Ali
S.M.
,
Axilbund
J.
,
Chu
D.
et al. .
(
2017
)
Individualized molecular analyses guide efforts (IMAGE): a prospective study of molecular profiling of tissue and blood in metastatic triple-negative breast cancer
.
Clin. Cancer Res.
23
,
379
386
[PubMed]
48.
Zehir
A.
,
Benayed
R.
,
Shah
R.H.
,
Syed
A.
,
Middha
S.
,
Kim
H.R.
et al. .
(
2017
)
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
.
Nat. Med.
23
,
703
713
[PubMed]
49.
Hahn
H.
,
Wicking
C.
,
Zaphiropoulous
P.G.
,
Gailani
M.R.
,
Shanley
S.
,
Chidambaram
A.
et al. .
(
1996
)
Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome
.
Cell
85
,
841
851
[PubMed]
50.
Johnson
R.L.
,
Rothman
A.L.
,
Xie
J.
,
Goodrich
L.V.
,
Bare
J.W.
,
Bonifas
J.M.
et al. .
(
1996
)
Human homolog of patched, a candidate gene for the basal cell nevus syndrome
.
Science
272
,
1668
1671
[PubMed]
51.
Taylor
M.D.
,
Liu
L.
,
Raffel
C.
,
Hui
C.C.
,
Mainprize
T.G.
,
Zhang
X.
et al. .
(
2002
)
Mutations in SUFU predispose to medulloblastoma
.
Nat. Genet.
31
,
306
310
[PubMed]
52.
Fan
Z.
,
Li
J.
,
Du
J.
,
Zhang
H.
,
Shen
Y.
,
Wang
C.Y.
et al. .
(
2008
)
A missense mutation in PTCH2 underlies dominantly inherited NBCCS in a Chinese family
.
J. Med. Genet.
45
,
303
308
[PubMed]
53.
Aavikko
M.
,
Li
S.P.
,
Saarinen
S.
,
Alhopuro
P.
,
Kaasinen
E.
,
Morgunova
E.
et al. .
(
2012
)
Loss of SUFU function in familial multiple meningioma
.
Am. J. Hum. Genet.
91
,
520
526
[PubMed]
54.
Onodera
S.
,
Saito
A.
,
Hasegawa
D.
,
Morita
N.
,
Watanabe
K.
,
Nomura
T.
et al. .
(
2017
)
Multi-layered mutation in Hedgehog-related genes in Gorlin syndrome may affect the phenotype
.
PLoS ONE
12
,
e0184702
[PubMed]
55.
Reinders
M.G.
,
van Hout
A.F.
,
Cosgun
B.
,
Paulussen
A.D.
,
Leter
E.M.
,
Steijlen
P.M.
et al. .
(
2018
)
New mutations and an updated database for the patched-1 (PTCH1) gene
.
Mol. Genet. Genomic Med.
6
,
409
415
[PubMed]
56.
Smith
M.J.
,
Beetz
C.
,
Williams
S.G.
,
Bhaskar
S.S.
,
O’Sullivan
J.
,
Anderson
B.
et al. .
(
2014
)
Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations
.
J. Clin. Oncol.
32
,
4155
4161
[PubMed]
57.
Guerrini-Rousseau
L.
,
Dufour
C.
,
Varlet
P.
,
Masliah-Planchon
J.
,
Bourdeaut
F.
,
Guillaud-Bataille
M.
et al. .
(
2018
)
Germline SUFU mutation carriers and medulloblastoma: clinical characteristics, cancer risk, and prognosis
.
Neuro Oncol.
20
,
1122
1132
[PubMed]
58.
Khamaysi
Z.
,
Bochner
R.
,
Indelman
M.
,
Magal
L.
,
Avitan-Hersh
E.
,
Sarig
O.
et al. .
(
2016
)
Segmental basal cell naevus syndrome caused by an activating mutation in smoothened
.
Br. J. Dermatol.
175
,
178
181
[PubMed]
59.
Twigg
S.R.F.
,
Hufnagel
R.B.
,
Miller
K.A.
,
Zhou
Y.
,
McGowan
S.J.
,
Taylor
J.
et al. .
(
2016
)
A recurrent mosaic mutation in SMO, encoding the Hedgehog signal transducer Smoothened, is the major cause of Curry-Jones syndrome
.
Am. J. Hum. Genet.
98
,
1256
1265
[PubMed]
60.
De Mori
R.
,
Romani
M.
,
D’Arrigo
S.
,
Zaki
M.S.
,
Lorefice
E.
,
Tardivo
S.
et al. .
(
2017
)
Hypomorphic recessive variants in SUFU impair the Sonic Hedgehog pathway and cause Joubert Syndrome with cranio-facial and skeletal defects
.
Am. J. Hum. Genet.
101
,
552
563
[PubMed]
61.
Bonilla
X.
,
Parmentier
L.
,
King
B.
,
Bezrukov
F.
,
Kaya
G.
,
Zoete
V.
et al. .
(
2016
)
Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma
.
Nat. Genet.
48
,
398
406
[PubMed]
62.
Kool
M.
,
Jones
D.T.
,
Jäger
N.
,
Northcott
P.A.
,
Pugh
T.J.
,
Hovestadt
V.
et al. .
(
2014
)
Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition
.
Cancer Cell
25
,
393
405
[PubMed]
63.
Hainsworth
J.D.
,
Meric-Bernstam
F.
,
Swanton
C.
,
Hurwitz
H.
,
Spigel
D.R.
,
Sweeney
C.
et al. .
(
2018
)
Targeted therapy for advanced solid tumors on the basis of molecular profiles: Results from MyPathway, an open-label, phase IIa multiple basket study
.
J. Clin. Oncol.
36
,
536
542
[PubMed]
64.
Witkiewicz
A.K.
,
McMillan
E.A.
,
Balaji
U.
,
Baek
G.
,
Lin
W.C.
,
Mansour
J.
et al. .
(
2015
)
Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets
.
Nat. Commun.
6
,
6744
[PubMed]
65.
Brastianos
P.K.
,
Horowitz
P.M.
,
Santagata
S.
,
Jones
R.T.
,
McKenna
A.
,
Getz
G.
et al. .
(
2013
)
Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations
.
Nat. Genet.
45
,
285
289
[PubMed]
66.
Yaeger
R.
,
Chatila
W.K.
,
Lipsyc
M.D.
,
Hechtman
J.F.
,
Cercek
A.
,
Sanchez-Vega
F.
et al. .
(
2018
)
Clinical sequencing defines the genomic landscape of metastatic colorectal cancer
.
Cancer Cell
33
,
125
136
[PubMed]
67.
Graham
R.P.
,
Nair
A.A.
,
Davila
J.I.
,
Jin
L.
,
Jen
J.
,
Sukov
W.R.
et al. .
(
2017
)
Gastroblastoma harbors a recurrent somatic MALAT1-GLI1 fusion gene
.
Mod. Pathol.
30
,
1443
1452
[PubMed]
68.
Spans
L.
,
Fletcher
C.D.
,
Antonescu
C.R.
,
Rouquette
A.
,
Coindre
J.M.
,
Sciot
R.
et al. .
(
2016
)
Recurrent MALAT1-GLI1 oncogenic fusion and GLI1 up-regulation define a subset of plexiform fibromyxoma
.
J. Pathol.
239
,
335
243
[PubMed]
69.
Xie
J
,
Murone
M
,
Luoh
SM
,
Ryan
A
,
Gu
Q
,
Zhang
C
et al. .
(
1998
)
Activating Smoothened mutations in sporadic basal-cell carcinoma
.
Nature
391
,
90
92
[PubMed]
70.
Epstein
E.H.
(
2008
)
Basal cell carcinomas: attack of the Hedgehog
.
Nat. Rev. Cancer
8
,
743
754
[PubMed]
71.
Northcott
P.A.
,
Buchhalter
I.
,
Morrissy
A.S.
,
Hovestadt
V.
,
Weischenfeldt
J.
,
Ehrenberger
T.
et al. .
(
2017
)
The whole-genome landscape of medulloblastoma subtypes
.
Nature
547
,
311
317
[PubMed]
72.
Pellegrini
C.
,
Maturo
M.G.
,
Di Nardo
L.
,
Ciciarelli
V.
,
Gutiérrez García-Rodrigo
C.
and
Fargnoli
M.C.
(
2017
)
Understanding the molecular genetics of basal cell carcinoma
.
Int. J. Mol. Sci.
18
,
E2485
[PubMed]
73.
Didiasova
M.
,
Schaefer
L.
and
Wygrecka
M.
(
2018
)
Targeting GLI transcription factors in cancer
.
Molecules
23
,
1003
74.
Berman
D.M.
,
Karhadkar
S.S.
,
Maitra
A.
,
Montes De Oca
R.
,
Gerstenblith
M.R.
,
Briggs
K.
et al. .
(
2003
)
Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours
.
Nature
425
,
846
851
[PubMed]
75.
Yauch
R.L.
,
Gould
S.E.
,
Scales
S.J.
,
Tang
T.
,
Tian
H.
,
Ahn
C.P.
et al. .
(
2008
)
A paracrine requirement for Hedgehog signalling in cancer
.
Nature
455
,
406
410
[PubMed]
76.
Riaz
S.K.
,
Khan
J.S.
,
Shah
S.T.A.
,
Wang
F.
,
Ye
L.
,
Jiang
W.G.
et al. .
(
2018
)
Involvement of Hedgehog pathway in early onset, aggressive molecular subtypes and metastatic potential of breast cancer
.
Cell Commun. Signal.
16
,
3
[PubMed]
77.
Kangwan
N.
,
Kim
Y.J.
,
Han
Y.M.
,
Jeong
M.
,
Park
J.M.
,
Go
E.J.
et al. .
(
2016
)
Sonic Hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition
.
Oncotarget
7
,
7667
7682
[PubMed]
78.
Mazumdar
T.
,
DeVecchio
J.
,
Shi
T.
,
Jones
J.
,
Agyeman
A.
and
Houghton
J.A.
(
2011
)
Hedgehog signaling drives cellular survival in human colon carcinoma cells
.
Cancer Res.
71
,
1092
1102
[PubMed]
79.
Merchant
J.L.
and
Ding
L.
(
2017
)
Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions
.
Cell. Mol. Gastroenterol. Hepatol.
3
,
201
210
[PubMed]
80.
Wessler
S.
,
Krisch
L.M.
,
Elmer
D.P.
and
Aberger
F.
(
2017
)
From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases
.
Cell Commun. Signal.
15
,
15
[PubMed]
81.
Oh
S.C.
,
Sohn
B.H.
,
Cheong
J.H.
,
Kim
S.B.
,
Lee
J.E.
,
Park
K.C.
et al. .
(
2018
)
Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype
.
Nat. Commun.
9
,
1777
[PubMed]
82.
Irvine
D.A.
and
Copland
M.
(
2012
)
Targeting Hedgehog in hematologic malignancy
.
Blood
119
,
2196
2204
[PubMed]
83.
Huang
L.
,
Walter
V.
,
Hayes
D.N.
and
Onaitis
M.
(
2014
)
Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer
.
Clin. Cancer Res.
20
,
1566
1575
[PubMed]
84.
Chen
Q.
,
Xu
R.
,
Zeng
C.
,
Lu
Q.
,
Huang
D.
,
Shi
C.
et al. .
(
2014
)
Down-regulation of GLI transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling
.
PLoS ONE
9
,
e88386
[PubMed]
85.
Spivak-Kroizman
T.R.
,
Hostetter
G.
,
Posner
R.
,
Aziz
M.
,
Hu
C.
,
Demeure
M.J.
et al. .
(
2013
)
Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer
.
Cancer Res.
73
,
3235
3247
[PubMed]
86.
Qu
C.
,
Liu
Y.
,
Kunkalla
K
,
Singh
R.R.
,
Blonska
M.
,
Lin
X.
et al. .
(
2013
)
Trimeric G protein-CARMA1 axis links smoothened, the hedgehog receptor transducer, to NF-κB activation in diffuse large B-cell lymphoma
.
Blood
121
,
4718
4728
[PubMed]
87.
Nieto Gutierrez
A.
and
McDonald
P.H.
(
2018
)
GPCRs: Emerging anti-cancer drug targets
.
Cell. Signal.
41
,
65
74
[PubMed]
88.
Zhang
X.
,
Dong
S.
and
Xu
F.
(
2018
)
Structural and druggability landscape of Frizzled G protein-coupled receptors
.
Trends Biochem. Sci.
43
,
1033
1046
[PubMed]
89.
Koike
J.
,
Takagi
A.
,
Miwa
T.
,
Hirai
M.
,
Terada
M.
and
Katoh
M.
(
1999
)
Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family
.
Biochem. Biophys. Res. Commun.
262
,
39
43
[PubMed]
90.
Rudin
C.M.
,
Hann
C.L.
,
Laterra
J.
,
Yauch
R.L.
,
Callahan
C.A.
,
Fu
L.
et al. .
(
2009
)
Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449
.
N. Engl. J. Med.
361
,
1173
1178
[PubMed]
91.
Von Hoff
D.D.
,
LoRusso
P.M.
,
Rudin
C.M.
,
Reddy
J.C.
,
Yauch
R.L.
,
Tibes
R.
et al. .
(
2009
)
Inhibition of the hedgehog pathway in advanced basal-cell carcinoma
.
N. Engl. J. Med.
361
,
1164
1172
[PubMed]
92.
LoRusso
P.M.
,
Rudin
C.M.
,
Reddy
J.C.
,
Tibes
R.
,
Weiss
G.J.
,
Borad
M.J.
et al. .
(
2011
)
Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors
.
Clin. Cancer Res.
17
,
2502
2511
[PubMed]
93.
Rodon
J.
,
Tawbi
H.A.
,
Thomas
A.L.
,
Stoller
R.G.
,
Turtschi
C.P.
,
Baselga
J.
et al. .
(
2014
)
A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors
.
Clin. Cancer Res.
20
,
1900
1909
[PubMed]
94.
Wagner
A.J.
,
Messersmith
W.A.
,
Shaik
M.N.
,
Li
S.
,
Zheng
X.
,
McLachlan
K.R.
et al. .
(
2015
)
A phase I study of PF-04449913, an oral hedgehog inhibitor, in patients with advanced solid tumors
.
Clin. Cancer Res.
21
,
1044
1051
[PubMed]
95.
Martinelli
G.
,
Oehler
V.G.
,
Papayannidis
C.
,
Courtney
R.
,
Shaik
M.N.
,
Zhang
X.
et al. .
(
2015
)
Treatment with PF-04449913, an oral smoothened antagonist, in patients with myeloid malignancies: a phase 1 safety and pharmacokinetics study
.
Lancet Haematol.
2
,
e339
e346
[PubMed]
96.
Minami
Y.
,
Minami
H.
,
Miyamoto
T.
,
Yoshimoto
G.
,
Kobayashi
Y.
,
Munakata
W.
et al. .
(
2017
)
Phase I study of glasdegib (PF-04449913), an oral smoothened inhibitor, in Japanese patients with select hematologic malignancies
.
Cancer Sci.
108
,
1628
1633
[PubMed]
97.
Jimeno
A.
,
Weiss
G.J.
,
Miller
W.H.
Jr
,
Gettinger
S.
,
Eigl
B.J.
,
Chang
A.L.
et al. .
(
2013
)
Phase I study of the Hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors
.
Clin. Cancer Res.
19
,
2766
2774
[PubMed]
98.
Taipale
J.
,
Chen
J.K.
,
Cooper
M.K.
,
Wang
B.
,
Mann
R.K.
,
Milenkovic
L.
et al. .
(
2000
)
Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine
.
Nature
406
,
1005
1009
[PubMed]
99.
Chen
J.K.
,
Taipale
J.
,
Young
K.E.
,
Maiti
T.
and
Beachy
P.A.
(
2002
)
Small molecule modulation of Smoothened activity
.
Proc. Natl. Acad. Sci. U.S.A.
99
,
14071
14076
100.
Bendell
J.
,
Andre
V.
,
Ho
A.
,
Kudchadkar
R.
,
Migden
M.
,
Infante
J.
et al. .
(
2018
)
Phase I study of LY2940680, a Smo antagonist, in patients with advanced cancer including treatment-naïve and previously treated basal cell carcinoma
.
Clin. Cancer Res.
24
,
2082
2091
[PubMed]
101.
Riedlinger
D.
,
Bahra
M.
,
Boas-Knoop
S.
,
Lippert
S.
,
Bradtmöller
M.
,
Guse
K.
et al. .
(
2014
)
Hedgehog pathway as a potential treatment target in human cholangiocarcinoma
.
J. Hepatobiliary Pancreat. Sci.
21
,
607
615
[PubMed]
102.
Peukert
S.
,
He
F.
,
Dai
M.
,
Zhang
R.
,
Sun
Y.
,
Miller-Moslin
K.
et al. .
(
2013
)
Discovery of NVP-LEQ506, a second-generation inhibitor of smoothened
.
ChemMedChem
8
,
1261
1265
[PubMed]
103.
Goldman
J.
,
Eckhardt
S.G.
,
Borad
M.J.
,
Curtis
K.K.
,
Hidalgo
M.
,
Calvo
E.
et al. .
(
2015
)
Phase I dose-escalation trial of the oral investigational Hedgehog signaling pathway inhibitor TAK-441 in patients with advanced solid tumors
.
Clin. Cancer Res.
21
,
1002
1009
[PubMed]
104.
Kim
J.
,
Aftab
B.T.
,
Tang
J.Y.
,
Kim
D.
,
Lee
A.H.
,
Rezaee
M.
et al. .
(
2013
)
Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists
.
Cancer Cell
23
,
23
34
[PubMed]
105.
Kim
DJ
,
Kim
J
,
Spaunhurst
K
,
Montoya
J
,
Khodosh
R
,
Chandra
K
et al. .
(
2014
)
Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma
.
J. Clin. Oncol.
32
,
745
751
[PubMed]
106.
Chen
B.
,
Trang
V.
,
Lee
A.
,
Williams
N.S.
,
Wilson
A.N.
,
Epstein
E.H.
Jr
et al. .
(
2016
)
Posaconazole, a second-generation triazole antifungal drug, inhibits the Hedgehog signaling pathway and progression of basal cell carcinoma
.
Mol. Cancer Ther.
15
,
866
876
[PubMed]
107.
Wang
C.
,
Wu
H.
,
Katritch
V.
,
Han
G.W.
,
Huang
X.P.
,
Liu
W.
et al. .
(
2013
)
Structure of the human Smoothened receptor bound to an antitumour agent
.
Nature
497
,
338
343
[PubMed]
108.
Wang
C.
,
Wu
H.
,
Evron
T.
,
Vardy
E.
,
Han
G.W.
,
Huang
X.P.
et al. .
(
2014
)
Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs
.
Nat. Commun.
5
,
4355
[PubMed]
109.
Sharpe
H.J.
,
Wang
W.
,
Hannoush
R.N.
and
de Sauvage
F.J.
(
2015
)
Regulation of the oncoprotein Smoothened by small molecules
.
Nat. Chem. Biol.
11
,
246
255
[PubMed]
110.
Petrova
E.
,
Matevossian
A.
and
Resh
M.D.
(
2015
)
Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma
.
Oncogene
34
,
263
268
[PubMed]
111.
Michaud
N.R.
,
Wang
Y.
,
McEachern
K.A.
,
Jordan
J.J.
,
Mazzola
A.M.
,
Hernandez
A.
et al. .
(
2014
)
Novel neutralizing hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine hedgehog signaling
.
Mol. Cancer Ther.
13
,
386
398
[PubMed]
112.
Beauchamp
E.M.
,
Ringer
L.
,
Bulut
G.
,
Sajwan
K.P.
,
Hall
M.D.
,
Lee
Y.C.
et al. .
(
2011
)
Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway
.
J. Clin. Invest.
121
,
148
160
[PubMed]
113.
Ally
M.S.
,
Ransohoff
K.
,
Sarin
K.
,
Atwood
S.X.
,
Rezaee
M.
,
Bailey-Healy
I.
et al. .
(
2016
)
Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma
.
JAMA Dermatol.
152
,
452
456
[PubMed]
114.
Infante
P.
,
Mori
M.
,
Alfonsi
R.
,
Ghirga
F.
,
Aiello
F.
,
Toscano
S.
et al. .
(
2015
)
Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors
.
EMBO J.
34
,
200
217
[PubMed]
115.
Lauth
M.
,
Bergström
A.
,
Shimokawa
T.
and
Toftgård
R.
(
2007
)
Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists
.
Proc. Natl. Acad. Sci. U.S.A.
104
,
8455
8460
116.
Agyeman
A.
,
Jha
B.K.
,
Mazumdar
T.
and
Houghton
J.A.
(
2014
)
Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding
.
Oncotarget
5
,
4492
4503
[PubMed]
117.
Didiasova
M.
,
Singh
R.
,
Wilhelm
J.
,
Kwapiszewska
G.
,
Wujak
L.
,
Zakrzewicz
D.
et al. .
(
2017
)
Pirfenidone exerts antifibrotic effects through inhibition of GLI transcription factors
.
FASEB J.
31
,
1916
1928
[PubMed]
118.
Gruber
W
,
Peer
E
,
Elmer
DP
,
Sternberg
C
,
Tesanovic
S
,
Del Burgo
P
et al. .
(
2018
)
Targeting class I histone deacetylases by the novel small molecule inhibitor 4SC-202 blocks oncogenic Hedgehog-GLI signaling and overcomes smoothened inhibitor resistance
.
Int. J. Cancer
142
,
968
975
[PubMed]
119.
Basset-Seguin
N.
,
Sharpe
H.J.
and
de Sauvage
F.J.
(
2015
)
Efficacy of Hedgehog pathway inhibitors in basal cell carcinoma
.
Mol. Cancer Ther.
14
,
633
641
[PubMed]
120.
Sekulic
A.
and
Von Hoff
D.
(
2016
)
Hedgehog pathway inhibition
.
Cell
164
,
831
[PubMed]
121.
Migden
M.R.
,
Chang
A.L.S.
,
Dirix
L.
,
Stratigos
A.J.
and
Lear
J.T.
(
2018
)
Emerging trends in the treatment of advanced basal cell carcinoma
.
Cancer Treat. Rev.
64
,
1
10
[PubMed]
122.
Sekulic
A.
,
Migden
M.R.
,
Basset-Seguin
N.
,
Garbe
C.
,
Gesierich
A.
,
Lao
C.D.
et al. .
(
2017
)
Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study
.
BMC Cancer
17
,
332
[PubMed]
123.
Basset-Séguin
N.
,
Hauschild
A.
,
Kunstfeld
R.
,
Grob
J.
,
Dréno
B.
,
Mortier
L.
et al. .
(
2017
)
Vismodegib in patients with advanced basal cell carcinoma: primary analysis of STEVIE, an international, open-label trial
.
Eur. J. Cancer
86
,
334
348
[PubMed]
124.
Lear
J.T.
,
Migden
M.R.
,
Lewis
K.D.
,
Chang
A.L.S.
,
Guminski
A.
,
Gutzmer
R.
et al. .
(
2018
)
Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study
.
J. Eur. Acad. Dermatol. Venereol.
32
,
372
381
[PubMed]
125.
Lacouture
M.E.
,
Dréno
B.
,
Ascierto
P.A.
,
Dummer
R.
,
Basset-Seguin
N.
,
Fife
K.
et al. .
(
2016
)
Characterization and management of Hedgehog pathway inhibitor-related adverse events in patients with advanced basal cell carcinoma
.
Oncologist
21
,
1218
1229
[PubMed]
126.
Robinson
G.W.
,
Orr
B.A.
,
Wu
G.
,
Gururangan
S.
,
Lin
T.
,
Qaddoumi
I.
et al. .
(
2015
)
Vismodegib exerts targeted efficacy against recurrent Sonic Hedgehog-subgroup medulloblastoma: Results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032
.
J. Clin. Oncol.
33
,
2646
2654
[PubMed]
127.
Kieran
M.W.
,
Chisholm
J.
,
Casanova
M
,
Brandes
A.A.
,
Aerts
I.
,
Bouffet
E.
et al. .
(
2017
)
Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma
.
Neuro Oncol.
19
,
1542
1552
[PubMed]
128.
Cavalli
F.M.G.
,
Remke
M.
,
Rampasek
L.
,
Peacock
J.
,
Shih
D.J.H.
,
Luu
B.
et al. .
(
2017
)
Intertumoral heterogeneity within medulloblastoma subgroups
.
Cancer Cell
31
,
737
754
[PubMed]
129.
Northcott
P.A.
,
Shih
D.J.
,
Peacock
J.
,
Garzia
L.
,
Morrissy
A.S.
,
Zichner
T.
et al. .
(
2012
)
Subgroup-specific structural variation across 1,000 medulloblastoma genomes
.
Nature
488
,
49
56
[PubMed]
130.
Wu
F.
,
Zhang
Y.
,
Sun
B.
,
McMahon
A.P.
and
Wang
Y.
(
2017
)
Hedgehog signaling: from basic biology to cancer therapy
.
Cell Chem. Biol.
24
,
252
280
[PubMed]
131.
Curran
T.
(
2018
)
Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer
.
Open Biol.
8
,
180098
[PubMed]
132.
Houot
R.
,
Soussain
C.
,
Tilly
H.
,
Haioun
C.
,
Thieblemont
C.
,
Casasnovas
O.
et al. .
(
2016
)
Inhibition of Hedgehog signaling for the treatment of lymphoma and CLL: a phase II study from the LYSA
.
Ann. Oncol.
27
,
1349
1350
[PubMed]
133.
Italiano
A.
,
Le Cesne
A.
,
Bellera
C.
,
Piperno-Neumann
S.
,
Duffaud
F.
,
Penel
N.
et al. .
(
2013
)
GDC-0449 in patients with advanced chondrosarcomas: a French Sarcoma Group/US and French National Cancer Institute single-arm phase II collaborative study
.
Ann. Oncol.
24
,
2922
2926
[PubMed]
134.
Kaye
S.B.
,
Fehrenbacher
L.
,
Holloway
R.
,
Amit
A.
,
Karlan
B.
,
Slomovitz
B.
et al. .
(
2012
)
A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission
.
Clin. Cancer Res.
18
,
6509
6518
[PubMed]
135.
Camidge
D.R.
,
Pao
W.
and
Sequist
L.V.
(
2014
)
Acquired resistance to TKIs in solid tumours: learning from lung cancer
.
Nat. Rev. Clin. Oncol.
11
,
473
481
[PubMed]
136.
Katoh
M.
(
2017
)
Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity
.
Int. J. Oncol.
51
,
1357
1369
[PubMed]
137.
Yauch
R.L.
,
Dijkgraaf
G.J.
,
Alicke
B.
,
Januario
T.
,
Ahn
C.P.
,
Holcomb
T.
et al. .
(
2009
)
Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma
.
Science
326
,
572
574
[PubMed]
138.
Sharpe
H.J.
,
Pau
G.
,
Dijkgraaf
G.J.
,
Basset-Seguin
N.
,
Modrusan
Z.
,
Januario
T.
et al. .
(
2015
)
Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma
.
Cancer Cell
27
,
327
341
[PubMed]
139.
Atwood
S.X.
,
Sarin
K.Y.
,
Whitson
R.J.
,
Li
J.R.
,
Kim
G.
,
Rezaee
M.
et al. .
(
2015
)
Smoothened variants explain the majority of drug resistance in basal cell carcinoma
.
Cancer Cell
27
,
342
353
[PubMed]
140.
Buonamici
S.
,
Williams
J.
,
Morrissey
M.
,
Wang
A.
,
Guo
R.
,
Vattay
A.
et al. .
(
2010
)
Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma
.
Sci. Transl. Med.
2
,
51ra70
[PubMed]
141.
Dijkgraaf
G.J.
,
Alicke
B.
,
Weinmann
L.
,
Januario
T.
,
West
K.
,
Modrusan
Z.
et al. .
(
2011
)
Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance
.
Cancer Res.
71
,
435
444
[PubMed]
142.
Zhao
X.
,
Pak
E.
,
Ornell
K.J.
,
Pazyra-Murphy
M.F.
,
MacKenzie
E.L.
,
Chadwick
E.J.
et al. .
(
2017
)
A transposon screen identifies loss of primary cilia as a mechanism of resistance to SMO inhibitors
.
Cancer Discov.
7
,
1436
1449
[PubMed]
143.
Biehs
B.
,
Dijkgraaf
G.J.P.
,
Piskol
R.
,
Alicke
B.
,
Boumahdi
S.
,
Peale
F.
et al. .
(
2018
)
A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition
.
Nature
562
,
429
433
[PubMed]
144.
Sánchez-Danés
A.
,
Larsimont
J.C.
,
Liagre
M.
,
Muñoz-Couselo
E.
,
Lapouge
G.
,
Brisebarre
A.
et al. .
(
2018
)
A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy
.
Nature
562
,
434
438
[PubMed]
145.
Katoh
M.
and
Katoh
M.
(
2017
)
Molecular genetics and targeted therapy of WNT-related human diseases
.
Int. J. Mol. Med.
40
,
587
606
[PubMed]
146.
Katoh
M.
(
2018
)
Multi‐layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‐catenin signaling activation
.
Int. J. Mol. Med.
42
,
713
725
[PubMed]
147.
Song
L.
,
Li
Z.Y.
,
Liu
W.P.
and
Zhao
M.R.
(
2015
)
Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy
.
Cancer Biol. Ther.
16
,
1
7
[PubMed]
148.
Ding
M.
and
Wang
X.
(
2017
)
Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity
.
Oncol. Lett.
14
,
6327
6333
[PubMed]
149.
Katoh
M.
,
Hirai
M.
,
Sugimura
T.
and
Terada
M.
(
1996
)
Cloning, expression and chromosomal localization of Wnt-13, a novel member of the Wnt gene family
.
Oncogene
13
,
873
876
[PubMed]
150.
Katoh
M.
,
Kirikoshi
H.
,
Terasaki
H.
and
Shiokawa
K.
(
2001
)
WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- β-catenin-TCF signaling pathway
.
Biochem. Biophys. Res. Commun.
289
,
1093
1098
[PubMed]
151.
Degirmenci
B.
,
Valenta
T.
,
Dimitrieva
S.
,
Hausmann
G.
and
Basler
K.
(
2018
)
GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells
.
Nature
558
,
449
453
[PubMed]
152.
Sadarangani
A.
,
Pineda
G.
,
Lennon
K.M.
,
Chun
H.J.
,
Shih
A.
,
Schairer
A.E.
et al. .
(
2015
)
GLI2 inhibition abrogates human leukemia stem cell dormancy
.
J. Transl. Med.
13
,
98
[PubMed]
153.
Irvine
D.A.
,
Zhang
B.
,
Kinstrie
R.
,
Tarafdar
A.
,
Morrison
H.
,
Campbell
V.L.
et al. .
(
2016
)
Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia
.
Sci. Rep.
6
,
25476
[PubMed]
154.
Katagiri
S.
,
Tauchi
T.
,
Okabe
S.
,
Minami
Y.
,
Kimura
S.
,
Maekawa
T.
et al. .
(
2013
)
Combination of ponatinib with Hedgehog antagonist vismodegib for therapy-resistant BCR-ABL1-positive leukemia
.
Clin. Cancer Res.
19
,
1422
1432
[PubMed]
155.
Chaudhry
P.
,
Singh
M.
,
Triche
T.J.
,
Guzman
M.
and
Merchant
A.A.
(
2017
)
GLI3 repressor determines Hedgehog pathway activation and is required for response to SMO antagonist glasdegib in AML
.
Blood
129
,
3465
3475
[PubMed]
156.
Olive
K.P.
,
Jacobetz
M.A.
,
Davidson
C.J.
,
Gopinathan
A.
,
McIntyre
D.
,
Honess
D.
et al. .
(
2009
)
Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
.
Science
324
,
1457
1461
[PubMed]
157.
Catenacci
D.V.
,
Junttila
M.R.
,
Karrison
T.
,
Bahary
N.
,
Horiba
M.N.
,
Nattam
S.R.
et al. .
(
2015
)
Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer
.
J. Clin. Oncol.
33
,
4284
4292
[PubMed]
158.
Berlin
J.
,
Bendell
J.C.
,
Hart
L.L.
,
Firdaus
I.
,
Gore
I.
,
Hermann
R.C.
et al. .
(
2013
)
A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer
.
Clin. Cancer Res.
19
,
258
267
[PubMed]
159.
Cortes
J.E.
,
Douglas Smith
B.
,
Wang
E.S.
,
Merchant
A.
,
Oehler
V.G.
,
Arellano
M.
et al. .
(
2018
)
Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: Phase 2 study results
.
Am. J. Hematol.
93
,
1301
1310
[PubMed]
160.
Hugo
W.
,
Zaretsky
J.M.
,
Sun
L.
,
Song
C.
,
Moreno
B.H.
,
Hu-Lieskovan
S.
et al. .
(
2016
)
Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
.
Cell
165
,
35
44
[PubMed]
161.
Charoentong
P.
,
Finotello
F.
,
Angelova
M.
,
Mayer
C.
,
Efremova
M.
,
Rieder
D.
et al. .
(
2017
)
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade
.
Cell Rep.
18
,
248
262
[PubMed]
162.
Sharma
P.
,
Hu-Lieskovan
S.
,
Wargo
J.A.
and
Ribas
A.
(
2017
)
Primary, adaptive, and acquired resistance to cancer immunotherapy
.
Cell
168
,
707
723
[PubMed]
163.
Nishino
M.
,
Ramaiya
N.H.
,
Hatabu
H.
and
Hodi
F.S.
(
2017
)
Monitoring immune-checkpoint blockade: response evaluation and biomarker development
.
Nat. Rev. Clin. Oncol.
14
,
655
668
[PubMed]
164.
Ribas
A.
and
Wolchok
J.D.
(
2018
)
Cancer immunotherapy using checkpoint blockade
.
Science
359
,
1350
1355
[PubMed]
165.
Migden
M.R.
,
Rischin
D.
,
Schmults
C.D.
,
Guminski
A.
,
Hauschild
A.
,
Lewis
K.D.
et al. .
(
2018
)
PD-1 Blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma
.
N. Engl. J. Med.
379
,
341
351
[PubMed]
166.
O’Donnell
J.S.
,
Teng
M.W.L.
and
Smyth
M.J.
(
2019
)
Cancer immunoediting and resistance to T cell-based immunotherapy
.
Nat. Rev. Clin. Oncol.
16
,
151
167
[PubMed]
167.
Wellenstein
M.D.
and
de Visser
K.E.
(
2018
)
Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape
.
Immunity
48
,
399
416
[PubMed]
168.
Goel
S.
,
DeCristo
M.J.
,
Watt
A.C.
,
BrinJones
H.
,
Sceneay
J.
,
Li
B.B.
et al. .
(
2017
)
CDK4/6 inhibition triggers anti-tumour immunity
.
Nature
548
,
471
475
[PubMed]
169.
Zhang
J.
,
Bu
X.
,
Wang
H.
,
Zhu
Y.
,
Geng
Y.
,
Nihira
N.T.
et al. .
(
2018
)
Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance
.
Nature
553
,
91
95
[PubMed]
170.
Fukumura
D.
,
Kloepper
J.
,
Amoozgar
Z.
,
Duda
D.G.
and
Jain
R.K.
(
2018
)
Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges
.
Nat. Rev. Clin. Oncol.
15
,
325
340
[PubMed]
171.
Galon
J.
and
Bruni
D.
(
2019
)
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
.
Nat. Rev. Drug Discov.
18
,
197
218
[PubMed]
172.
Pham
C.D.
,
Flores
C.
,
Yang
C.
,
Pinheiro
E.M.
,
Yearley
J.H.
,
Sayour
E.J.
et al. .
(
2016
)
Differential immune microenvironments and response to immune checkpoint blockade among molecular subtypes of murine medulloblastoma
.
Clin. Cancer Res.
22
,
582
595
[PubMed]
173.
Stewart
G.A.
,
Lowrey
J.A.
,
Wakelin
S.J.
,
Fitch
P.M.
,
Lindey
S.
,
Dallman
M.J.
et al. .
(
2002
)
Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells
.
J. Immunol.
169
,
5451
5457
[PubMed]
174.
Martin
A.M.
,
Nirschl
C.J.
,
Polanczyk
M.J.
,
Bell
W.R.
,
Nirschl
T.R.
,
Harris-Bookman
S.
et al. .
(
2018
)
PD-L1 expression in medulloblastoma: an evaluation by subgroup
.
Oncotarget
9
,
19177
19191
[PubMed]
175.
Shi
G.
,
Zhang
H.
,
Yu
Q.
,
Jin
H.
,
Hu
C.M.
,
Li
S.C.
et al. .
(
2018
)
Epigenetic silencing of sonic hedgehog elicits antitumor immune response and suppresses tumor growth by inhibiting the hedgehog signaling pathway in metastatic spine tumors in Sprague-Dawley rats
.
J. Cell. Biochem.
119
,
9591
9603
[PubMed]
176.
Otsuka
A.
,
Dreier
J.
,
Cheng
P.F.
,
Nägeli
M.
,
Lehmann
H.
,
Felderer
L.
et al. .
(
2015
)
Hedgehog pathway inhibitors promote adaptive immune responses in basal cell carcinoma
.
Clin. Cancer Res.
21
,
1289
1297
[PubMed]
177.
Chang
J.
,
Zhu
G.A.
,
Cheung
C.
,
Li
S.
,
Kim
J.
and
Chang
A.L.
(
2017
)
Association between Programmed Death Ligand 1 expression in patients with basal cell carcinomas and the number of teatment modalities
.
JAMA Dermatol.
153
,
285
290
[PubMed]
178.
Lipson
E.J.
,
Lilo
M.T.
,
Ogurtsova
A.
,
Esandrio
J.
,
Xu
H.
,
Brothers
P.
et al. .
(
2017
)
Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade
.
J. Immunother. Cancer
5
,
23
[PubMed]
179.
Fischer
S.
,
Ali
O.H.
,
Jochum
W.
,
Kluckert
T.
,
Flatz
L.
and
Siano
M.
(
2018
)
Anti-PD-1 therapy leads to near-complete remission in a patient with metastatic basal cell carcinoma
.
Oncol. Res. Treat.
41
,
391
394
[PubMed]
180.
Moreira
A.
,
Kirchberger
M.C.
,
Toussaint
F.
,
Erdmann
M.
,
Schuler
G.
and
Heinzerling
L.
(
2018
)
Effective anti-programmed death-1 therapy in a SUFU-mutated patient with Gorlin-Goltz syndrome
.
Br. J. Dermatol.
179
,
747
749
[PubMed]
181.
Nikanjam
M.
,
Cohen
P.R.
,
Kato
S.
,
Sicklick
J.K.
and
Kurzrock
R.
(
2018
)
Advanced basal cell cancer: concise review of molecular characteristics and novel targeted and immune therapeutics
.
Ann. Oncol.
29
,
2192
2199
[PubMed]
182.
Eichberger
T.
,
Regl
G.
,
Ikram
M.S.
,
Neill
G.W.
,
Philpott
M.P.
,
Aberger
F.
et al. .
(
2004
)
FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma
.
J. Invest. Dermatol.
122
,
1180
1187
[PubMed]
183.
Kasper
M.
,
Schnidar
H.
,
Neill
G.W.
,
Hanneder
M.
,
Klingler
S.
,
Blaas
L.
et al. .
(
2006
)
Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes
.
Mol. Cell. Biol.
26
,
6283
6298
[PubMed]
184.
He
J.
,
Sheng
T.
,
Stelter
A.A.
,
Li
C.
,
Zhang
X.
,
Sinha
M.
et al. .
(
2006
)
Suppressing Wnt signaling by the Hedgehog pathway through sFRP-1
.
J. Biol. Chem.
281
,
35598
35602
[PubMed]
185.
Madison
B.B.
,
McKenna
L.B.
,
Dolson
D.
,
Epstein
D.J.
and
Kaestner
K.H.
(
2009
)
FoxF1 and FoxL1 link Hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine
.
J. Biol. Chem.
284
,
5936
5944
[PubMed]
186.
Po
A.
,
Ferretti
E.
,
Miele
E.
,
De Smaele
E.
,
Paganelli
A.
,
Canettieri
G.
et al. .
(
2010
)
Hedgehog controls neural stem cells through p53-independent regulation of Nanog
.
EMBO J.
29
,
2646
2658
[PubMed]
187.
Colvin Wanshura
L.E.
,
Galvin
K.E.
,
Ye
H.
,
Fernandez-Zapico
M.E.
and
Wetmore
C.
(
2011
)
Sequential activation of Snail1 and N-Myc modulates Sonic hedgehog-induced transformation of neural cells
.
Cancer Res.
71
,
5336
5345
[PubMed]
188.
Wang
D.H.
,
Tiwari
A.
,
Kim
M.E.
,
Clemons
N.J.
,
Regmi
N.L.
,
Hodges
W.A.
et al. .
(
2014
)
Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia
.
J. Clin. Invest.
124
,
3767
3780
[PubMed]
189.
Santini
R.
,
Pietrobono
S.
,
Pandolfi
S.
,
Montagnani
V.
,
D’Amico
M.
,
Penachioni
J.Y.
et al. .
(
2014
)
SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells
.
Oncogene
33
,
4697
4708
[PubMed]
190.
Wang
D.
,
Hu
G.
,
Du
Y.
,
Zhang
C.
,
Lu
Q.
,
Lv
N.
et al. .
(
2017
)
Aberrant activation of Hedgehog signaling promotes cell proliferation via the transcriptional activation of Forkhead Box M1 in colorectal cancer cells
.
J. Exp. Clin. Cancer Res.
36
,
23
[PubMed]
191.
Burns
M.A.
,
Liao
Z.W.
,
Yamagata
N.
,
Pouliot
G.P.
,
Stevenson
K.E.
,
Neuberg
D.S.
et al. .
(
2018
)
Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia
.
Leukemia
32
,
2126
2137
[PubMed]
192.
Rankin
E.B.
and
Giaccia
A.J.
(
2016
)
Hypoxic control of metastasis
.
Science
352
,
175
180
[PubMed]
193.
Collins
P.J.
,
McCully
M.L.
,
Martínez-Muñoz
L.
,
Santiago
C.
,
Wheeldon
J.
,
Caucheteux
S.
et al. .
(
2017
)
Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4
.
FASEB J.
31
,
3084
3097
[PubMed]
194.
Katoh
M.
(
2016
)
FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis
.
Int. J. Mol. Med.
38
,
3
15
[PubMed]
195.
Katoh
M.
(
2016
)
Therapeutics targeting FGF signaling network in human diseases
.
Trends Pharmacol. Sci.
37
,
1081
1096
[PubMed]
196.
Rucki
A.A.
,
Foley
K.
,
Zhang
P.
,
Xiao
Q.
,
Kleponis
J.
,
Wu
A.A.
et al. .
(
2017
)
Heterogeneous stromal signaling within the tumor microenvironment controls the metastasis of pancreatic cancer
.
Cancer Res.
77
,
41
52
[PubMed]
197.
Fan
Q.
,
He
M.
,
Sheng
T.
,
Zhang
X.
,
Sinha
M.
,
Luxon
B.
et al. .
(
2010
)
Requirement of TGFß signaling for SMO-mediated carcinogenesis
.
J. Biol. Chem.
285
,
36570
36576
[PubMed]
198.
Cavaco
A.
,
Rezaei
M.
,
Niland
S.
and
Eble
J.A.
(
2017
)
Collateral damage intended-cancer-associated fibroblasts and vasculature are potential targets in cancer therapy
.
Int. J. Mol. Sci.
18
,
E2355
[PubMed]
199.
Gotwals
P.
,
Cameron
S.
,
Cipolletta
D.
,
Cremasco
V.
,
Crystal
A.
,
Hewes
B.
et al. .
(
2017
)
Prospects for combining targeted and conventional cancer therapy with immunotherapy
.
Nat. Rev. Cancer
17
,
286
301
[PubMed]
200.
Liu
J.
,
Chen
S.
,
Wang
W.
,
Ning
B.F.
,
Chen
F.
,
Shen
W.
et al. .
(
2016
)
Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways
.
Cancer Lett.
379
,
49
59
[PubMed]
201.
Murray
P.J.
,
Allen
J.E.
,
Biswas
S.K.
,
Fisher
E.A.
,
Gilroy
D.W.
,
Goerdt
S.
et al. .
(
2014
)
Macrophage activation and polarization: nomenclature and experimental guidelines
.
Immunity
41
,
14
20
[PubMed]
202.
Nagarsheth
N.
,
Wicha
M.S.
and
Zou
W.
(
2017
)
Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy
.
Nat. Rev. Immunol.
17
,
559
572
[PubMed]
203.
Liu
C.
,
Workman
C.J.
and
Vignali
D.A.
(
2016
)
Targeting regulatory T cells in tumors
.
FEBS J.
283
,
2731
2748
[PubMed]
204.
Kumar
V.
,
Patel
S.
,
Tcyganov
E.
and
Gabrilovich
D.I.
(
2016
)
The nature of myeloid-derived suppressor cells in the tumor microenvironment
.
Trends Immunol.
37
,
208
220
[PubMed]
205.
Safarzadeh
E.
,
Orangi
M.
,
Mohammadi
H.
,
Babaie
F.
and
Baradaran
B.
(
2018
)
Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis
.
J. Cell. Physiol.
233
,
3024
3036
[PubMed]
206.
Curiel
T.J.
,
Coukos
G.
,
Zou
L.
,
Alvarez
X.
,
Cheng
P.
,
Mottram
P.
et al. .
(
2004
)
Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival
.
Nat. Med.
10
,
942
949
[PubMed]
207.
Porta
C.
,
Rimoldi
M.
,
Raes
G.
,
Brys
L.
,
Ghezzi
P.
,
Di Liberto
D.
et al. .
(
2009
)
Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB
.
Proc. Natl. Acad. Sci. U.S.A.
106
,
14978
14983
208.
Facciabene
A.
,
Peng
X.
,
Hagemann
I.S.
,
Balint
K.
,
Barchetti
A.
,
Wang
L.P.
et al. .
(
2011
)
Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells
.
Nature
475
,
226
230
[PubMed]
209.
Tao
H.
,
Jin
Q.
,
Koo
D.I.
,
Liao
X.
,
Englund
N.P.
,
Wang
Y.
et al. .
(
2011
)
Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of Smoothened
.
Chem. Biol.
18
,
432
437
[PubMed]
210.
Hwang
R.F.
,
Moore
T.T.
,
Hattersley
M.M.
,
Scarpitti
M.
,
Yang
B.
,
Devereaux
E.
et al. .
(
2012
)
Inhibition of the Hedgehog pathway targets the tumor-associated stroma in pancreatic cancer
.
Mol. Cancer Res.
10
,
1147
1157
[PubMed]
211.
Chen
J.
,
Lv
H.
,
Hu
J.
,
Ji
M.
,
Xue
N.
,
Li
C.
et al. .
(
2016
)
CAT3, a novel agent for medulloblastoma and glioblastoma treatment, inhibits tumor growth by disrupting the Hedgehog signaling pathway
.
Cancer Lett.
381
,
391
403
[PubMed]
212.
Williams
J.A.
,
Guicherit
O.M.
,
Zaharian
B.I.
,
Xu
Y.
,
Chai
L.
,
Wichterle
H.
et al. .
(
2003
)
Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions
.
Proc. Natl. Acad. Sci. U.S.A.
100
,
4616
4621
213.
Sever
N.
,
Mann
R.K.
,
Xu
L.
,
Snell
W.J.
,
Hernandez-Lara
C.I.
,
Porter
N.A.
et al. .
(
2016
)
Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols
.
Proc. Natl. Acad. Sci. U.S.A.
113
,
5904
5909
214.
Wang
Y.
,
Arvanites
A.C.
,
Davidow
L.
,
Blanchard
J.
,
Lam
K.
,
Yoo
J.W.
et al. .
(
2012
)
Selective identification of Hedgehog pathway antagonists by direct analysis of Smoothened ciliary translocation
.
ACS Chem. Biol.
7
,
1040
1048
[PubMed]
215.
Filocamo
G.
,
Brunetti
M.
,
Colaceci
F.
,
Sasso
R.
,
Tanori
M.
,
Pasquali
E.
et al. .
(
2016
)
MK-4101, a potent inhibitor of the Hedgehog pathway, is highly active against medulloblastoma and basal cell carcinoma
.
Mol. Cancer Ther.
15
,
1177
1189
[PubMed]
216.
Hoch
L.
,
Faure
H.
,
Roudaut
H.
,
Schoenfelder
A.
,
Mann
A.
,
Girard
N.
et al. .
(
2015
)
MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor
.
FASEB J.
29
,
1817
1829
[PubMed]
217.
Rohner
A.
,
Spilker
M.E.
,
Lam
J.L.
,
Pascual
B.
,
Bartkowsk
I.D.
,
Li
Q.J.
et al. .
(
2012
)
Effective targeting of Hedgehog signaling in a medulloblastoma model with PF-5274857, a potent and selective Smoothened antagonist that penetrates the blood-brain barrier
.
Mol. Cancer Ther.
11
,
57
65
[PubMed]
218.
Ferruzzi
P.
,
Mennillo
F.
,
De Rosa
A.
,
Giordano
C.
,
Rossi
M.
,
Benedetti
G.
et al. .
(
2012
)
In vitro and in vivo characterization of a novel Hedgehog signaling antagonist in human glioblastoma cell lines
.
Int. J. Cancer
131
,
E33
E44
[PubMed]