1. Young Wistar rats were used as an experimental model to determine the effects of protein-energy malnutrition on glucose tolerance and insulin release.

2. Malnourished rats presented some of the features commonly found in human protein-energy malnutrition, such as failure to gain weight, hypoalbuminaemia, fatty infiltration of the liver and intolerance of oral and intravenous glucose loads.

3. The rate of disappearance of glucose from the gut lumen was greater in the malnourished rats but there was no significant difference in portal blood glucose concentration between normal and malnourished rats 5 and 10 min after an oral glucose load.

4. Insulin resistance was not thought to be the cause of the glucose intolerance in the malnourished animals since these rats had a low fasting plasma insulin concentration with a normal fasting blood glucose concentration and no impairment in their hypoglycaemic response to exogenous insulin administration. Furthermore, fasting malnourished rats were unable to correct the insulin-induced hypoglycaemia despite high concentrations of hepatic glycogen.

5. Malnourished rats had lower peak plasma insulin concentrations than normal control animals after provocation with oral and intravenous glucose, intravenous tolbutamide and intravenous glucose plus aminophyllin. This was not due to a reduction in the insulin content of the pancreas or potassium deficiency. Healthy weanling rats, like the older malnourished rats, had a diminished insulin response to intravenous glucose and intravenous tolbutamide. However, their insulin response to stimulation with intravenous glucose plus aminophyllin far exceeded that of the malnourished rats. Thus the impairment of insulin release demonstrated in the malnourished rats cannot be ascribed to a ‘functional immaturity’ of the pancreas.

This content is only available as a PDF.