1. We investigated the glomerular expression of three types of myosin heavy-chain isoforms, including S-myosin heavy-chain 40 (SM1), S-myosin heavy-chain 29 (SM2) and FS-myosin heavy-chain 34 (SMemb) in puromycin aminonucleoside nephrosis.

2. There was little change in SM1 and SM2 mRNA levels throughout the experiment. In contrast, glomerular SMemb mRNA increased on days 2 and 4 (before and soon after the onset of proteinuria, respectively), but declined on day 8 (the peak of proteinuria).

3. Histological myosin heavy-chain expression was examined using three antibodies against SM1, SM2 and SMemb. Immunohistochemically, SM1 and SM2 were absent in the glomeruli associated with puromycin aminonucleoside nephrosis until day 20. The SMemb isoform was barely detectable in normal glomeruli, but substantial amounts of SMemb were demonstrated in the glomeruli of rats with puromycin aminonucleoside nephrosis. In the puromycin aminonucleoside-treated rats, the number of SMemb-positive glomerular cells increased on days 2 and 4.

4. We examined whether levels of α-smooth-muscle actin or proliferating cell nuclear antigen correlated with myosin heavy-chain levels in the glomeruli of rats with puromycin aminonucleoside nephrosis. None of the cellular components in the glomeruli was positive for either α-smooth-muscle actin or proliferating cell nuclear antigen in puromycin aminonucleoside nephrosis.

5. Administration of methylprednisolone to puromycin aminonucleoside-treated rats resulted in the rapid disappearance of proteinuria. However, methylprednisolone did not affect SMemb mRNA or immunostaining in the glomeruli of rats with puromycin aminonucleoside nephrosis.

6. These data suggest that SMemb may be a molecular marker for phenotypic change in early glomerular injury, and demonstrate that SMemb regulation differs from that of SM1, SM2, α-smooth-muscle actin and proliferating cell nuclear antigen in the glomeruli of rats with puromycin aminonucleoside nephrosis.

This content is only available as a PDF.