Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-1 of 1
Aivaras Ratkevicius
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2012) 123 (5): 313–321.
Published: 16 May 2012
Abstract
Regular exercise can reduce the risk of CVD (cardiovascular disease). Although moderate-intensity exercise can attenuate postprandial TAG (triacylglycerol), high-intensity intermittent exercise might be a more effective method to improve health. We compared the effects of high-intensity intermittent exercise and 30 min of brisk walking on postprandial TAG, soluble adhesion molecules and markers of oxidative stress. Nine men each completed three 2-day trials. On day 1, subjects rested (control), walked briskly for 30 min (walking) or performed 5×30 s maximal sprints (high-intensity). On day 2, subjects consumed a high-fat meal for breakfast and 3 h later for lunch. Blood samples were taken at various times and analysed for TAG, glucose, insulin, ICAM-1 (intracellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), TBARS (thiobarbituric acid- reactive substances), protein carbonyls and β-hydroxybutyrate. On day 2 of the high-intensity trial, there was a lower ( P <0.05) incremental TAG AUC (area under the curve; 6.42±2.24 mmol/l per 7 h) compared with the control trial (9.68±4.77 mmol/l per 7 h) with no differences during day 2 of the walking trial (8.98±2.84 mmol/l per 7 h). A trend ( P =0.056) for a reduced total TAG AUC was also seen during the high-intensity trial (14.13±2.83 mmol/l per 7 h) compared with control (17.18±3.92 mmol/l per 7 h), walking showed no difference (16.33±3.51 mmol/l per 7 h). On day 2 of the high-intensity trial plasma TBARS and protein carbonyls were also reduced ( P <0.05) when compared with the control and walking trials. In conclusion, high-intensity intermittent exercise attenuates postprandial TAG and markers of oxidative stress after the consumption of a high-fat meal.