Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-1 of 1
Eva Tavares
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2010) 119 (12): 519–534.
Published: 01 September 2010
Abstract
Severe sepsis and septic shock are an important cause of mortality and morbidity. These illnesses can be triggered by the bacterial endotoxin LPS (lipopolysaccharide) and pro-inflammatory cytokines, particularly TNF-α (tumour necrosis factor-α) and IL (interleukin)-1β. Severity and mortality of sepsis have also been associated with high concentrations of N-PCT (aminoprocalcitonin), a 57-amino-acid neuroendocrine peptide derived from ProCT (procalcitonin). Previous studies in a lethal model of porcine polymicrobial sepsis have revealed that immunoneutralization with IgG that is reactive to porcine N-PCT significantly improves short-term survival. To explore further the pathophysiological role of N-PCT in sepsis, we developed an antibody raised against a highly conserved amino acid sequence of human N-PCT [N-PCT-(44–57)]. This sequence differs by only one amino acid from rat N-PCT. First, we demonstrated the specificity of this antibody in a well-proven model of anorexia induced in rats by central administration of human N-PCT-(1–57). Next we explored further the therapeutic potential of anti-N-PCT-(44–57) in a rat model of lethal endotoxaemia and determined how this immunoneutralization affected LPS-induced lethality and cytokine production. We show that this specific antibody inhibited the LPS-induced early release of TNF-α and IL-1β and increased survival, even if treatment began after the cytokine response had occurred. In addition, anti-N-PCT-(44–57) may increase long-term survival in LPS-treated rats by up-regulating the late production of counter-regulatory anti-inflammatory mediators such as ACTH (adrenocorticotropic hormone) and IL-10. In conclusion, these results support N-PCT as a pro-inflammatory factor in both the early and the late stages of lethal endotoxaemia, and suggest anti-N-PCT as a candidate for septic shock therapy.