Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Article Type
Date
Availability
1-8 of 8
Pedro A. Jose
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Daqian Gu, Dandong Fang, Mingming Zhang, Jingwen Guo, Hongmei Ren, Xinyue Li, Ziyue Zhang, Donghai Yang, Xue Zou, Yukai Liu, Wei Eric Wang, Gengze Wu, Pedro A. Jose, Yu Han, Chunyu Zeng
Journal:
Clinical Science
Clin Sci (Lond) (2021) 135 (2): 409–427.
Published: 29 January 2021
Abstract
Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.
Includes: Supplementary data
Articles
Yan Zhang, Shaoxiong Wang, Hefei Huang, Andi Zeng, Yu Han, Cindy Zeng, Shuo Zheng, Hongmei Ren, Yajing Wang, Yu Huang, Pedro A. Jose, Xin-Liang Ma, Chunyu Zeng, Ken Chen
Journal:
Clinical Science
Clin Sci (Lond) (2020) 134 (18): 2453–2467.
Published: 25 September 2020
Abstract
Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo −/− ) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar–Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na + -K + -ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.
Includes: Supplementary data
Articles
Ken Chen, Dongdong Sun, Shuang Qu, Yue Chen, Jialiang Wang, Lin Zhou, Pedro A. Jose, Yongjian Yang, Chunyu Zeng
Journal:
Clinical Science
Clin Sci (Lond) (2019) 133 (9): 1097–1113.
Published: 09 May 2019
Abstract
Environmental temperature plays a role in the variation of blood pressure. Maternal cold stress could affect the physiological phenotype of the offspring, including blood pressure elevation. In the present study, we found that adult offspring of dams exposed to cold have increased systolic and diastolic blood pressure, and decreased urine volume and sodium excretion, accompanied by increased heart rate and heart rate variability, secondary to increased activity of the sympathetic nervous system. Renal denervation or adrenergic receptor blockade decreased blood pressure and increased sodium excretion. The increase in peripheral sympathetic nerve activity can be ascribed to the central nervous system because administration of clonidine, a centrally acting α 2 adrenergic receptor agonist, lowered blood pressure to a greater degree in the prenatal cold-exposed than control offspring. Moreover, these prenatal cold-exposed offspring had hypothalamic paraventricular nucleus (PVN) disorder because magnetic resonance spectroscopy showed decreased N-acetylaspartate and increased choline and creatine ratios in the PVN. Additional studies found that prenatal cold exposure impaired the balance between inhibitory and excitatory neurons. This led to PVN overactivation that was related to enhanced PVN-angiotensin II type 1 (AT 1 ) receptor expression and function. Microinjection of the AT 1 receptor antagonist losartan in the PVN lowered blood pressure to a greater extent in prenatal cold-exposed that control offspring. The present study provides evidence for overactive peripheral and central sympathetic nervous systems in the pathogenesis of prenatal cold-induced hypertension. Central AT 1 receptor blockade in the PVN may be a key step for treatment of this type hypertension.
Includes: Supplementary data
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2019) 133 (5): 723–737.
Published: 15 March 2019
Abstract
The sorting nexin (SNX) family consists of a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal roles in the regulation of protein trafficking. This includes the entire endocytic pathway, such as endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX pathway are involved in several forms of cardiovascular disease (CVD). Moreover, SNX gene variants are associated with CVDs. In this review, we discuss the current knowledge on SNX-mediated regulatory mechanisms and their roles in the pathogenesis and treatment of CVDs.
Articles
Yu Han, Xiang Liao, Zhao Gao, Sufei Yang, Caiyu Chen, Yukai Liu, Wei Eric Wang, Gengze Wu, Xiongwen Chen, Pedro A. Jose, Ye Zhang, Chunyu Zeng
Journal:
Clinical Science
Clin Sci (Lond) (2016) 130 (24): 2279–2293.
Published: 10 November 2016
Abstract
Cardiac troponin I (cTnI), a biomarker for myocardial damage and risk stratification, may be involved in the pathogenesis of cardiovascular diseases, which was ascribed to the effect of cTnI auto-antibodies. Whether or not cTnI itself has a direct impact on acute myocardial injury is unknown. To exclude the influence of cTnI antibody on the cardiac infarct size, we studied the effect of cTnI shortly after myocardial ischaemia–reperfusion (I/R) injury when cTnI antibodies were not elevated. Pretreatment with cTnI augmented the myocardial infarct size caused by I/R, accompanied by an increase in inflammatory markers in the blood and myocardium. Additional experiments using human umbilical vein endothelial cells (HUVECs) showed that the detrimental effect of cTnI was related to cTnI-induced increase in vascular cell adhesion molecule-1 (VCAM-1) expression and VCAM-1 mediated adhesion of human monocytes (THP-1) to HUVECs, which could be neutralized by VCAM-1 antibody. Both toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were involved in the signalling pathway, because blockade of either TLR4 or NF-κB inhibited the cTnI's effect on VCAM-1 expression and adhesion of monocytes to endothelial cells. Moreover, TLR4 inhibition reduced cTnI-augmented cardiac injury in rats with I/R injury. We conclude that cTnI exacerbates myocardial I/R injury by inducing the adhesion of monocytes to vascular endothelial cells via activation of the TLR4/NF-κB pathway. Inhibition of TLR4 may be an alternative strategy to reduce cTnI-induced myocardial I/R injury.
Includes: Supplementary data
Articles
Yujia Yang, Yue Cai, Gengze Wu, Xinjian Chen, Yukai Liu, Xinquan Wang, Junyi Yu, Chuanwei Li, Xiongwen Chen, Pedro A. Jose, Lin Zhou, Chunyu Zeng
Journal:
Clinical Science
Clin Sci (Lond) (2015) 129 (8): 675–685.
Published: 22 July 2015
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in the pathogenesis of cardiovascular disease (CVD), but whether circulating lncRNAs can serve as a coronary artery disease (CAD), biomarker is not known. The present study screened lncRNAs by microarray analysis in the plasma from CAD patients and control individuals and found that 265 lncRNAs were differentially expressed. To find specific lncRNAs as possible CAD biomarker candidates, we used the following criteria for 174 up-regulated lncRNAs: signal intensity ≥8, fold change >2.5 and P <0.005. According to these criteria, five intergenic lncRNAs were identified. After validation by quantitative PCR (qPCR), one lncRNA was excluded from the candidate list. The remaining four lncRNAs were independently validated in another population of 20 CAD patients and 20 control individuals. Receiver operating characteristic (ROC) curve analysis showed that lncRNA AC100865.1 (referred to as CoroMarker) was the best of these lncRNAs. CoroMarker levels were also stable in plasma. The predictive value of CoroMarker was further assessed in a larger cohort with 221 CAD patients and 187 control individuals. Using a diagnostic model with Fisher's criteria, taking the risk factors into account, the optimal sensitivity of CoroMarker for CAD increased from 68.29% to 78.05%, whereas the specificity decreased slightly from 91.89% to 86.49%. CoroMarker was stable in plasma because it was mainly in the extracellular vesicles (EVs), probably from monocytes. We conclude that CoroMarker is a stable, sensitive and specific biomarker for CAD.
Includes: Supplementary data
Articles
Jin Cai, Weiwei Guan, Xiaorong Tan, Caiyu Chen, Liangpeng Li, Na Wang, Xue Zou, Faying Zhou, Jialiang Wang, Fang Pei, Xinjian Chen, Hao Luo, Xinquan Wang, Duofen He, Lin Zhou, Pedro A. Jose, Chunyu Zeng
Journal:
Clinical Science
Clin Sci (Lond) (2015) 129 (3): 259–269.
Published: 08 May 2015
Abstract
We set out to investigate whether and how SRY (sex-determining region, Y) DNAs in plasma EVs (extracellular vesicles) is involved in the pathogenesis of atherosclerosis. PCR and gene sequencing found the SRY gene fragment in plasma EVs from male, but not female, patients; EVs from male patients with CAD (coronary artery disease) had a higher SRY GCN (gene copy number) than healthy subjects. Additional studies found that leucocytes, the major source of plasma EVs, had higher SRY GCN and mRNA and protein expression in male CAD patients than controls. After incubation with EVs from SRY -transfected HEK (human embryonic kidney)-293 cells, monocytes (THP-1) and HUVECs (human umbilical vein endothelial cells), which do not endogenously express SRY protein, were found to express newly synthesized SRY protein. This resulted in an increase in the adherence factors CD11-a in THP-1 cells and ICAM-1 (intercellular adhesion molecule 1) in HUVECs. EMSA showed that SRY protein increased the promoter activity of CD11-a in THP-1 cells and ICAM-1 in HUVECs. There was an increase in THP-1 cells adherent to HUVECs after incubation with SRY-EVs. SRY DNAs transferred from EVs have pathophysiological significance in vivo ; injection of SRY EVs into ApoE −/− (apolipoprotein-knockout) mice accelerated atherosclerosis. The SRY gene in plasma EVs transferred to vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis; this mechanism provides a new approach to the understanding of inheritable CAD in men.
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2007) 112 (12): 583–597.
Published: 14 May 2007
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin–angiotensin and sympathetic nervous systems. Dopamine receptors are classified into D 1 -like (D 1 and D 5 ) and D 2 -like (D 2 , D 3 and D 4 ) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms specific for the subtype. Some receptors regulate blood pressure by influencing the central and/or peripheral nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents. This review summarizes the physiology of the different dopamine receptors in the regulation of blood pressure, and the relationship between dopamine receptor subtypes and hypertension.