Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Article Type
Date
Availability
1-6 of 6
Umberto Galderisi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2016) 130 (16): 1389–1405.
Published: 07 July 2016
Abstract
The term ‘epigenetics’ refers to heritable, reversible DNA or histone modifications that affect gene expression without modifying the DNA sequence. Epigenetic modulation of gene expression also includes the RNA interference mechanism. Epigenetic regulation of gene expression is fundamental during development and throughout life, also playing a central role in disease progression. The transforming growth factor β 1 (TGF-β 1 ) and its downstream effectors are key players in tissue repair and fibrosis, extracellular matrix remodelling, inflammation, cell proliferation and migration. TGF-β 1 can also induce cell switch in epithelial-to-mesenchymal transition, leading to myofibroblast transdifferentiation. Cellular pathways triggered by TGF-β 1 in thoracic ascending aorta dilatation have relevant roles to play in remodelling of the vascular wall by virtue of their association with monogenic syndromes that implicate an aortic aneurysm, including Loeys–Dietz and Marfan's syndromes. Several studies and reviews have focused on the progression of aneurysms in the abdominal aorta, but research efforts are now increasingly being focused on pathogenic mechanisms of thoracic ascending aorta dilatation. The present review summarizes the most recent findings concerning the epigenetic regulation of effectors of TGF-β 1 pathways, triggered by sporadic dilative aortopathy of the thoracic ascending aorta in the presence of a tricuspid or bicuspid aortic valve, a congenital malformation occurring in 0.5–2% of the general population. A more in-depth comprehension of the epigenetic alterations associated with TGF-β 1 canonical and non-canonical pathways in dilatation of the ascending aorta could be helpful to clarify its pathogenesis, identify early potential biomarkers of disease, and, possibly, develop preventive and therapeutic strategies.
Articles
Amalia Forte, Barbara Rinaldi, Liberato Berrino, Francesco Rossi, Umberto Galderisi, Marilena Cipollaro
Journal:
Clinical Science
Clin Sci (Lond) (2014) 127 (11): 615–634.
Published: 25 July 2014
Abstract
Restenosis is the pathophysiological process occurring in 10–15% of patients submitted to revascularization procedures of coronary, carotid and peripheral arteries. It can be considered as an excessive healing reaction of the vascular wall subjected to arterial/venous bypass graft interposition, endarterectomy or angioplasty. The advent of bare metal stents, drug-eluting stents and of the more recent drug-eluting balloons, have significantly reduced, but not eliminated, the incidence of restenosis, which remains a clinically relevant problem. Biomedical research in pre-clinical animal models of (re)stenosis, despite its limitations, has contributed enormously to the identification of processes involved in restenosis progression, going well beyond the initial dogma of a primarily proliferative disease. Although the main molecular and cellular mechanisms underlying restenosis have been well described, new signalling molecules and cell types controlling the progress of restenosis are continuously being discovered. In particular, microRNAs and vascular progenitor cells have recently been shown to play a key role in this pathophysiological process. In addition, the advanced highly sensitive high-throughput analyses of molecular alterations at the transcriptome, proteome and metabolome levels occurring in injured vessels in animal models of disease and in human specimens serve as a basis to identify novel potential therapeutic targets for restenosis. Molecular analyses are also contributing to the identification of reliable circulating biomarkers predictive of post-interventional restenosis in patients, which could be potentially helpful in the establishment of an early diagnosis and therapy. The present review summarizes the most recent and promising therapeutic strategies identified in experimental models of (re)stenosis and potentially translatable to patients subjected to revascularization procedures.
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2014) 126 (2): 123–138.
Published: 13 September 2013
Abstract
Human endometrium is a highly dynamic tissue, undergoing periodic growth and regression at each menstrual cycle. Endometriosis is a frequent chronic pathological status characterized by endometrial tissue with an ectopic localization, causing pelvic pain and infertility and a variable clinical presentation. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation in approximately 1.0% of affected women, with the involvement of multiple pathways of development. Increasing evidence supports a key contribution of different stem/progenitor cell populations not only in the cyclic regeneration of eutopic endometrium, but also in the pathogenesis of at least some types of endometriosis. Evidence has arisen from experiments in animal models of disease through different kinds of assays (including clonogenicity, the label-retaining cell approach, the analysis of undifferentiation markers), as well as from descriptive studies on ectopic and eutopic tissue samples harvested from affected women. Changes in stem cell populations in endometriotic lesions are associated with genetic and epigenetic alterations, including imbalance of miRNA expression, histone and DNA modifications and chromosomal aberrations. The present short review mainly summarizes the latest observations contributing to the current knowledge regarding the presence and the potential contribution of stem/progenitor cells in eutopic endometrium and the aetiology of endometriosis, together with a report of the most recently identified genetic and epigenetic alterations in endometriosis. We also describe the potential advantages of single cell molecular profiling in endometrium and in endometriotic lesions. All these data can have clinical implications and provide a basis for new potential therapeutic applications.
Articles
Amalia Forte, Alessandro Della Corte, Mario Grossi, Ciro Bancone, Raffaela Provenzano, Mauro Finicelli, Marisa De Feo, Luca S. De Santo, Gianantonio Nappi, Maurizio Cotrufo, Umberto Galderisi, Marilena Cipollaro
Journal:
Clinical Science
Clin Sci (Lond) (2013) 124 (2): 97–108.
Published: 26 September 2012
Abstract
Previous studies on BAV (bicuspid aortic valve)-related aortopathy, whose aetiology is still debated, have focused mainly on severe dilatations. In the present study, we aimed to detect earlier signs of aortopathy. Specimens were collected from the ‘concavity’ (lesser curvature) and the ‘convexity’ (greater curvature) of mildly dilated AAs (ascending aortas; diameter ≤4 cm) with stenotic TAV (tricuspid aortic valve) or BAV and from donor normal aortas. Specimens were submitted to morphometry, immunohistochemistry and differential gene-expression analysis, focusing on SMC (smooth muscle cell) phenotype, remodelling, MF (myofibroblast) differentiation and TGFβ (transforming growth factor β) pathway. Smoothelin and myocardin mRNAs decreased in all the samples from patients, with the exception of those from BAV convexity, where a change in orientation of smoothelin-positive SMCs and an increase of α-SMA (α-smooth muscle actin) mRNA occurred. Dilated aortas from BAV and TAV patients showed both shared and distinct alterations concerning the TGFβ pathway, including an increased TGFβ and TGFβR2 (TGFβ receptor 2) expression in both groups and a decreased TGFβR1 expression in BAV samples only. Despite a decrease of the mRNA coding for the ED-A (extra domain-A) isoform of FN (fibronectin) in the BAV convexity, the onset of the expression of the corresponding protein in the media was observed in dilated aortas, whereas the normal media from donors was negative for this isoform. This discrepancy could be related to modifications in the intima, normally expressing ED-A FN and showing an altered structure in mild aortic dilatations in comparison with donor aorta. Our results suggest that changes in SMC phenotype and, likely, MF differentiation, occur early in the aortopathy associated with valve stenosis. The defective expression of TGFβR1 in BAV might be a constitutive feature, while other changes we reported could be influenced by haemodynamics.
Includes: Supplementary data
Articles
Amalia Forte, Mauro Finicelli, Mario Grossi, Mariano Vicchio, Nicola Alessio, Pasquale Santé, Marisa De Feo, Maurizio Cotrufo, Liberato Berrino, Francesco Rossi, Umberto Galderisi, Marilena Cipollaro
Journal:
Clinical Science
Clin Sci (Lond) (2010) 118 (7): 473–485.
Published: 12 January 2010
Abstract
Restenosis rates following vascular interventions still limit their long-term success. Oxidative stress plays a relevant role in this pathophysiological phenomenon, but less attention has been devoted to its effects on DNA damage and to the subsequent mechanisms of repair. In the present study, we analysed in a model of arteriotomy-induced stenosis in rat carotid arteries the time-dependent expression of DNA damage markers and of DNA repair genes, together with the assessment of proliferation and apoptosis indexes. The expression of the oxidative DNA damage marker 7,8-dihydro-8-oxo-2′-deoxyguanosine was increased at 3 and 7 days after arteriotomy, with immunostaining distributed in the injured vascular wall and perivascular tissue. Expression of the DNA damage marker phospho-H2A.X was less relevant, but increased from 4 h to 7 days after arteriotomy, with immunostaining prevalently present in the adventitia and, to a lesser extent, in medial smooth muscle cells at the injury site. RT (reverse transcription)–PCR indicated a decrease in eight out of 12 genes involved in the DNA repair machinery we selected from 4 h to 7 days after arteriotomy, with the exception of an increase in the Mutyh and Slk genes ( P <0.05). Western blot analysis revealed a decrease in p53 and catalase at 3 days after arteriotomy ( P <0.05). A maximal 7% of BrdU-positive cells in the endothelium and media occurred at 7 days after arteriotomy, whereas the apoptotic index peaked at 3 days after injury ( P <0.05). In conclusion, our results highlight a persistent DNA damage, presumably related to a temporary decrease in the expression of the DNA repair machinery and of the antioxidant enzyme catalase, playing a role in stenosis progression.
Articles
Amalia Forte, Mauro Finicelli, Pasquale de Luca, Ina Nordström, Francesco Onorati, Cesare Quarto, Pasquale Santè, Attilio Renzulli, Umberto Galderisi, Liberato Berrino, Marisa de Feo, Per Hellstrand, Francesco Rossi, Maurizio Cotrufo, Antonino Cascino, Marilena Cipollaro
Journal:
Clinical Science
Clin Sci (Lond) (2009) 116 (2): 125–136.
Published: 15 December 2008
Abstract
Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar–Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT–PCR (reverse transcription–PCR) and verified at the protein level by Western blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy ( P <0.0001; fold change, ≥2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin–angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local AngII (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo .
Includes: Supplementary data