Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Article Type
Date
Availability
1-4 of 4
Keywords: microarray
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Yasunori Enomoto, Sayomi Matsushima, Kiyoshi Shibata, Yoichiro Aoshima, Haruna Yagi, Shiori Meguro, Hideya Kawasaki, Isao Kosugi, Tomoyuki Fujisawa, Noriyuki Enomoto, Naoki Inui, Yutaro Nakamura, Takafumi Suda, Toshihide Iwashita
Journal:
Clinical Science
Clin Sci (Lond) (2018) 132 (14): 1565–1580.
Published: 31 July 2018
... actin (αSMA)-positive myofibroblasts is important in the progression of idiopathic pulmonary fibrosis (IPF), few biomarkers reflecting the fibrotic process have been discovered. We performed microarray analyses between FACS-sorted steady-state fibroblasts (lineage (CD45, TER-119, CD324, CD31, LYVE-1...
Abstract
Although differentiation of lung fibroblasts into α-smooth muscle actin (αSMA)-positive myofibroblasts is important in the progression of idiopathic pulmonary fibrosis (IPF), few biomarkers reflecting the fibrotic process have been discovered. We performed microarray analyses between FACS-sorted steady-state fibroblasts (lineage (CD45, TER-119, CD324, CD31, LYVE-1, and CD146)-negative and PDGFRα-positive cells) from untreated mouse lungs and myofibroblasts (lineage-negative, Sca-1-negative, and CD49e-positive cells) from bleomycin-treated mouse lungs. Amongst several genes up-regulated in the FACS-sorted myofibroblasts, we focussed on Ltbp2 , the gene encoding latent transforming growth factor-β (TGF-β) binding protein-2 (LTBP2), because of the signal similarity to Acta2 , which encodes αSMA, in the clustering analysis. The up-regulation was reproduced at the mRNA and protein levels in human lung myofibroblasts induced by TGF-β1. LTBP2 staining in IPF lungs was broadly positive in the fibrotic interstitium, mainly as an extracellular matrix (ECM) protein; however, some of the αSMA-positive myofibroblasts were also stained. Serum LTBP2 concentrations, evaluated using ELISA, in IPF patients were significantly higher than those in healthy volunteers (mean: 21.4 compared with 12.4 ng/ml) and showed a negative correlation with % predicted forced vital capacity (r = −0.369). The Cox hazard model demonstrated that serum LTBP2 could predict the prognosis of IPF patients (hazard ratio for death by respiratory events: 1.040, 95% confidence interval: 1.026–1.054), which was validated using the bootstrap method with 1000-fold replication. LTBP2 is a potential prognostic blood biomarker that may reflect the level of differentiation of lung fibroblasts into myofibroblasts in IPF.
Includes: Supplementary data
Articles
Qi-Wen Deng, Shuo Li, Huan Wang, Hui-Ling Sun, Lei Zuo, Zheng-Tian Gu, Guo Lu, Cai-Zhi Sun, Han-Qing Zhang, Fu-Ling Yan
Journal:
Clinical Science
Clin Sci (Lond) (2018) 132 (14): 1597–1614.
Published: 31 July 2018
... expression profile of lncRNAs in peripheral blood mononuclear cells (PBMCs) of acute IS patients and to explore their utility as biomarkers of IS. Distinctive expression patterns of PBMC lncRNAs were identified by an lncRNA microarray and individual quantitative real-time PCR (qRT-PCR) in four independent...
Abstract
Long noncoding RNAs (lncRNAs) have been highlighted to be involved in the pathological process of ischemic stroke (IS). The purpose of the present study was to investigate the expression profile of lncRNAs in peripheral blood mononuclear cells (PBMCs) of acute IS patients and to explore their utility as biomarkers of IS. Distinctive expression patterns of PBMC lncRNAs were identified by an lncRNA microarray and individual quantitative real-time PCR (qRT-PCR) in four independent sets for 206 IS, 179 healthy controls (HCs), and 55 patients with transient ischemic attack (TIA). A biomarker panel (lncRNA-based combination index) was established using logistic regression. LncRNA microarray analysis showed 70 up-regulated and 128 down-regulated lncRNAs in IS patients. Individual qRT-PCR validation demonstrated that three lncRNAs (linc-DHFRL1-4, SNHG15, and linc-FAM98A-3) were significantly up-regulated in IS patients compared with HCs and TIA patients. Longitudinal analysis of lncRNA expression up to 90 days after IS showed that linc-FAM98A-3 normalized to control levels by day 7, while SNHG15 remained increased, indicating the ability of lncRNAs to monitor IS dynamics. Receiver-operating characteristic (ROC) curve analysis showed that the lncRNA-based combination index outperformed serum brain-derived neurotrophic factor (BDNF) and neurone-specific enolase (NSE) in distinguishing IS patients from TIA patients and HCs with areas under ROC curve of more than 0.84. Furthermore, the combination index increased significantly after treatment and was correlated with neurological deficit severity of IS. The panel of these altered lncRNAs was associated with acute IS and could serve as a novel diagnostic method.
Includes: Supplementary data
Articles
Tzu-Pin Lu, Nai-Chen Chuang, Chin-Yu Cheng, Cheng-An Hsu, Yi-Chih Wang, Yen-Hong Lin, Jen-Kuang Lee, Cho-Kai Wu, Juey-Jen Hwang, Lian-Yu Lin, Shih-Fan Sherri Yeh, Kuo-Liang Chien, Jyh-Ming Jimmy Juang
Journal:
Clinical Science
Clin Sci (Lond) (2017) 131 (7): 583–594.
Published: 17 March 2017
... CAE patients and 12 propensity-matched individuals with normal coronary arteries using microarrays. Wilcoxon's rank sum tests revealed 89 genes with significantly different methylation levels ( P <0.05 and Δβ > |0.1|). Functional characterization using the DAVID database and gene set enrichment...
Abstract
Coronary artery ectasia (CAE) is a disease characterized by abnormally dilated coronary arteries. The mechanism of CAE remains unclear, and its treatment is limited. Previous studies have shown that risk factors for CAE were related to changes in DNA methylation. However, no systematic investigation of methylation profiles has been performed. Therefore, we compared methylation profiles between 12 CAE patients and 12 propensity-matched individuals with normal coronary arteries using microarrays. Wilcoxon's rank sum tests revealed 89 genes with significantly different methylation levels ( P <0.05 and Δβ > |0.1|). Functional characterization using the DAVID database and gene set enrichment analysis indicated that these genes were involved in immune and inflammatory responses. Of these genes 6 were validated in 29 CAE patients and 87 matched individuals with CAE, using pyro-sequencing. TLR6 and NOTCH4 showed significant differences in methylation between the two groups, and lower protein levels of toll-like receptor 6 (TLR6) were detected in CAE patients. In conclusion, this genome-wide analysis of methylation profiles in CAE patients showed that significant changes in both methylation and expression of TLR6 deserve further study to elucidate their roles in CAE.
Includes: Supplementary data
Articles
Amalia Forte, Mauro Finicelli, Pasquale de Luca, Ina Nordström, Francesco Onorati, Cesare Quarto, Pasquale Santè, Attilio Renzulli, Umberto Galderisi, Liberato Berrino, Marisa de Feo, Per Hellstrand, Francesco Rossi, Maurizio Cotrufo, Antonino Cascino, Marilena Cipollaro
Journal:
Clinical Science
Clin Sci (Lond) (2009) 116 (2): 125–136.
Published: 15 December 2008
... rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT–PCR (reverse transcription–PCR) and verified at the protein level by Western blotting. A total of 1011...
Abstract
Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar–Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT–PCR (reverse transcription–PCR) and verified at the protein level by Western blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy ( P <0.0001; fold change, ≥2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin–angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local AngII (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo .
Includes: Supplementary data