Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-1 of 1
Keywords: mitochondrial cholesterol trafficking complex
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Clinical Science
Clin Sci (Lond) (2013) 124 (8): 509–515.
Published: 08 January 2013
... transporter A1 liver X receptor macrophage cholesterol efflux mitochondrial cholesterol trafficking complex sterol 27-hydroxylase The importance of macrophage cholesterol efflux, and the reverse cholesterol transport pathway, in protecting against atherosclerosis and coronary heart disease is...
Abstract
Cholesterol trafficking from the outer to the cholesterol-poor inner mitochondrial membrane requires energized, polarized and actively respiring mitochondria, mediated by a highly regulated multimeric (140–200 kDa) protein complex comprising StAR (steroidogenic acute regulatory protein), mitochondrial TSPO (translocator protein), VDAC (voltage-dependent anion channel), ANT (adenine nucleotide transporter) and associated regulatory proteins. Mitochondrial cholesterol transport is rate-limiting in the CYP27A1 (sterol 27-hydroxylase)-dependent generation of oxysterol ligands for LXR (liver X receptor) transcription factors that regulate the expression of genes encoding proteins in the cholesterol efflux pathway, such as ABC transporters (ATP-binding cassette transporters) ABCA1 and ABCG1. These transporters transfer cholesterol and/or phospholipids across the plasma membrane to (apo)lipoprotein acceptors, generating nascent HDLs (high-density lipoproteins), which can safely transport excess cholesterol through the bloodstream to the liver for excretion in bile. Utilizing information from steroidogenic tissues, we propose that perturbations in mitochondrial function may reduce the efficiency of the cholesterol efflux pathway, favouring accumulation of cholesteryl ester ‘foam cells’ and allowing the toxic accumulation of free cholesterol at the interface between the endoplasmic reticulum and the mitochondrial membrane. In turn, this will trigger opening of the permeability transition pore, allowing unregulated production of oxysterols via CYP27A1, allowing the accumulation of esterified forms of this oxysterol within human atherosclerotic lesions. Defective cholesterol efflux also induces endoplasmic reticulum stress, proteasomal degradation of ABCA1 and Fas-dependent apoptosis, replicating findings in macrophages in advanced atherosclerotic lesions. Small molecules targeted to mitochondria, capable of sustaining mitochondrial function or improving cholesterol trafficking may aid cholesterol efflux from macrophage ‘foam’ cells, regressing and stabilizing the atherosclerotic plaque.