Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-1 of 1
Keywords: proliferator-activated receptor-γ
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Kai-Chen Wang, Ching-Piao Tsai, Chao-Lin Lee, Shao-Yuan Chen, Gu-Jiun Lin, Mao-Hsiung Yen, Huey-Kang Sytwu, Shyi-Jou Chen
Journal:
Clinical Science
Clin Sci (Lond) (2013) 125 (7): 329–340.
Published: 07 June 2013
...Kai-Chen Wang; Ching-Piao Tsai; Chao-Lin Lee; Shao-Yuan Chen; Gu-Jiun Lin; Mao-Hsiung Yen; Huey-Kang Sytwu; Shyi-Jou Chen ALA (α-lipoic acid) is a natural, endogenous antioxidant that acts as a PPAR-γ (peroxisome-proliferator-activated receptor-γ) agonist to counteract oxidative stress. Thus far...
Abstract
ALA (α-lipoic acid) is a natural, endogenous antioxidant that acts as a PPAR-γ (peroxisome-proliferator-activated receptor-γ) agonist to counteract oxidative stress. Thus far, the antioxidative and immunomodulatory effects of ALA on EAE (experimental autoimmune encephalomyelitis) are not well understood. In this study, we found that ALA restricts the infiltration of inflammatory cells into the CNS (central nervous system) in MOG (myelin oligodendrocyte glycoprotein)-EAE mice, thus reducing the disease severity. In addition, we revealed that ALA significantly suppresses the number and percentage of encephalitogenic Th1 and Th17 cells and increases splenic T reg -cells (regulatory T-cells). Strikingly, we further demonstrated that ALA induces endogenous PPAR-γ centrally and peripherally but has no effect on HO-1 (haem oxygenase 1). Together, these data suggest that ALA can up-regulate endogenous systemic and central PPAR-γ and enhance systemic T reg -cells to inhibit the inflammatory response and ameliorate MOG-EAE. In conclusion, our data provide the first evidence that ALA can augment the production of PPAR-γ in vivo and modulate adaptive immunity both centrally and peripherally in EAE and may reveal further antioxidative and immunomodulatory mechanisms for the application of ALA in human MS (multiple sclerosis).
Includes: Supplementary data