The rapid emergence of antibiotic-resistant bacterial strains has prompted efforts to find new and more efficacious treatment strategies. Targeting virulence factors produced by pathogenic bacteria has gained particular attention in the last few years. One of the inherent advantages of this approach is that it provides less selective pressure for the development of resistance mechanisms. In addition, antivirulence drugs could potentially be the answer for diseases in which the use of conventional antibiotics is counterproductive. That is the case for bacterial toxin-mediated diseases, in which the severity of the symptoms is a consequence of the exotoxins produced by the pathogen. Examples of these are haemolytic-uraemic syndrome produced by Shiga toxins, the profuse and dangerous dehydration caused by Cholera toxin or the life-threatening colitis occasioned by clostridial toxins. This review focuses on the recent advances on the development of small molecules with antitoxin activity against Enterohaemorrhagic Escherichia coli, Vibrio cholerae and Clostridium difficile given their epidemiological importance. The present work includes studies of small molecules with antitoxin properties that act directly on the toxin (direct inhibitors) or that act by preventing expression of the toxin (indirect inhibitors).

You do not currently have access to this content.