Macrophages are considered a critical component of innate immunity against intracellular pathogens. Although macrophages have historically been viewed as monocyte-derived and terminally differentiated cells, recent progress has revealed that many tissue-resident macrophages are embryonically seeded, self-renewed, and perform homeostatic functions associated with M2-like activation programs. There is evidence that tissue-resident macrophages (TRMs) maintain their M2-like phenotype even in an infection-driven pro-inflammatory environment. In this regard, several intracellular pathogens are shown to exploit M2-like TRMs as replicative niches to evade pathogen-specific immunity. This knowledge provides a new perspective to understand the chronicity of infections and develop therapeutic strategies which can selectively target TRMs.
-
Cover Image
Cover Image
Trypanosoma brucei, the causative agent of African sleeping sickness. Among the parasitology topics covered in this issue are perspectives on various aspects of trypanosome biology: Kemmerling et al. (pages 573–577) look at the immune response against Trypanosoma cruzi in the human placenta, while Maya et al. (pages 579–584) discuss therapeutic strategies in chronic Chagas cardiomyopathy, which is caused by T. cruzi. In addition, McCulloch et al. (pages 585–592) and Ooi and Rudenko (pages 593–600) explore antigenic variation in trypanosomes. Image credit: Kateryna Kon (Shutterstock ID: 520410646).
Tissue-resident macrophages as replicative niches for intracellular pathogens Available to Purchase
Roberto Docampo, Sang Hun Lee, David L. Sacks; Tissue-resident macrophages as replicative niches for intracellular pathogens. Emerg Top Life Sci 22 December 2017; 1 (6): 621–626. doi: https://doi.org/10.1042/ETLS20170110
Download citation file: