Structural biology often focuses primarily on three-dimensional structures of biological macromolecules, deposited in the Protein Data Bank (PDB). This resource is a remarkable entity for the worldwide scientific and medical communities, as well as the general public, as it is a growing translation into three-dimensional space of the vast information in genomic databases, e.g. GENBANK. There is, however, significantly more to understanding biological function than the three-dimensional co-ordinate space for ground-state structures of biomolecules. The vast array of biomolecules experiences natural dynamics, interconversion between multiple conformational states, and molecular recognition and allosteric events that play out on timescales ranging from picoseconds to seconds. This wide range of timescales demands ingenious and sophisticated experimental tools to sample and interpret these motions, thus enabling clearer insights into functional annotation of the PDB. NMR spectroscopy is unique in its ability to sample this range of timescales at atomic resolution and in physiologically relevant conditions using spin relaxation methods. The field is constantly expanding to provide new creative experiments, to yield more detailed coverage of timescales, and to broaden the power of interpretation and analysis methods. This review highlights the current state of the methodology and examines the extension of analysis tools for more complex experiments and dynamic models. The future for understanding protein dynamics is bright, and these extended tools bring greater compatibility with developments in computational molecular dynamics, all of which will further our understanding of biological molecular functions. These facets place NMR as a key component in integrated structural biology.
Skip Nav Destination
Article navigation
April 2018
Issue Editors
-
Cover Image
Cover Image
Cryo-STX projection image showing a parasitophorous vacuole (yellow) within a human fibroblast cell, containing four Toxoplasma gondii parasites (membranes in cyan, nuclei in red and rhoptries in green). In this issue of Emerging Topics in Life Sciences, Harkiolaki et al. describe the use of Cryo-soft X-ray tomography to explore the ultrastructure of whole cells. Image kindly provided by Professor Helen Saibil (Birkbeck College, London, U.K.). For further details, see pages 81–92.
Review Article|
April 20 2018
Protein dynamics revealed by NMR relaxation methods Available to Purchase
Fa-An Chao;
Fa-An Chao
1Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, U.S.A.
Search for other works by this author on:
R. Andrew Byrd
1Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, U.S.A.
Correspondence: R. Andrew Byrd ([email protected])
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
January 05 2018
Revision Received:
March 08 2018
Accepted:
March 13 2018
Online ISSN: 2397-8562
Print ISSN: 2397-8554
© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology
2018
Emerg Top Life Sci (2018) 2 (1): 93–105.
Article history
Received:
January 05 2018
Revision Received:
March 08 2018
Accepted:
March 13 2018
Citation
Marcellus Ubbink, Anastassis Perrakis, Fa-An Chao, R. Andrew Byrd; Protein dynamics revealed by NMR relaxation methods. Emerg Top Life Sci 20 April 2018; 2 (1): 93–105. doi: https://doi.org/10.1042/ETLS20170139
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.