The oxygenation of the atmosphere — one of the most fundamental transformations in Earth's history — dramatically altered the chemical composition of the oceans and provides a compelling example of how life can reshape planetary surface environments. Furthermore, it is commonly proposed that surface oxygen levels played a key role in controlling the timing and tempo of the origin and early diversification of animals. Although oxygen levels were likely more dynamic than previously imagined, we make a case here that emerging records provide evidence for low atmospheric oxygen levels for the majority of Earth's history. Specifically, we review records and present a conceptual framework that suggest that background oxygen levels were below 1% of the present atmospheric level during the billon years leading up to the diversification of early animals. Evidence for low background oxygen levels through much of the Proterozoic bolsters the case that environmental conditions were a critical factor in controlling the structure of ecosystems through Earth's history.
-
Cover Image
Cover Image
Gently inclined strata of the upper Bylot Supergroup in Edwin Inlet, Baffin Island (Canada). Bangiomorpha pubescens, a fossil red alga and the oldest taxonomically resolved eukaryote, occurs in the Bylot Supergroup and equivalent rocks in northeastern Canada. Recent radiometric dating has tightly constrained the first appearance of this fossil to ca. 1045 million years ago. Image kindly provided by Galen Halverson (McGill University), who with his co-authors in this issue, reviews the methods by which the Proterozoic time scale is dated and provide an up-to-date compilation of age constraints on key fossil first and last appearances, geological events, and horizons during the Tonian and Cryogenian periods. Their article also develops a new age model for a ca. 819–740 Ma composite section in Svalbard. For details, see pages 137–147.
A case for low atmospheric oxygen levels during Earth's middle history
Timothy W. Lyons, Mary L. Droser, Kimberly V. Lau, Susannah M. Porter, Noah J. Planavsky, Devon B. Cole, Terry T. Isson, Christopher T. Reinhard, Peter W. Crockford, Nathan D. Sheldon, Timothy W. Lyons; A case for low atmospheric oxygen levels during Earth's middle history. Emerg Top Life Sci 28 September 2018; 2 (2): 149–159. doi: https://doi.org/10.1042/ETLS20170161
Download citation file: