Existing paleontological data indicate marked eukaryote diversification in the Neoproterozoic, ca. 800 Ma, driven by predation pressure and various other biotic and abiotic factors. Although the eukaryotic record remains less diverse before that time, molecular clock estimates and earliest crown-group affiliated microfossils suggest that the diversification may have originated during the Mesoproterozoic. Within new assemblages of organic-walled microfossils from the ca. 1150 to 900 Ma lower Shaler Supergroup of Arctic Canada, numerous specimens from various taxa display circular and ovoid perforations on their walls, interpreted as probable traces of selective protist predation, 150–400 million years before their first reported incidence in the Neoproterozoic. Selective predation is a more complex behavior than phagotrophy, because it requires sensing and selection of prey followed by controlled lysis of the prey wall. The ca. 800 Ma eukaryotic diversification may have been more gradual than previously thought, beginning in the late Mesoproterozoic, as indicated by recently described microfossil assemblages, in parallel with the evolution of selective eukaryovory and the spreading of eukaryotic photosynthesis in marine environments.
-
Cover Image
Cover Image
Gently inclined strata of the upper Bylot Supergroup in Edwin Inlet, Baffin Island (Canada). Bangiomorpha pubescens, a fossil red alga and the oldest taxonomically resolved eukaryote, occurs in the Bylot Supergroup and equivalent rocks in northeastern Canada. Recent radiometric dating has tightly constrained the first appearance of this fossil to ca. 1045 million years ago. Image kindly provided by Galen Halverson (McGill University), who with his co-authors in this issue, reviews the methods by which the Proterozoic time scale is dated and provide an up-to-date compilation of age constraints on key fossil first and last appearances, geological events, and horizons during the Tonian and Cryogenian periods. Their article also develops a new age model for a ca. 819–740 Ma composite section in Svalbard. For details, see pages 137–147.
Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada
Timothy W. Lyons, Mary L. Droser, Kimberly V. Lau, Susannah M. Porter, Corentin C. Loron, Robert H. Rainbird, Elizabeth C. Turner, J. Wilder Greenman, Emmanuelle J. Javaux; Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada. Emerg Top Life Sci 28 September 2018; 2 (2): 247–255. doi: https://doi.org/10.1042/ETLS20170153
Download citation file: