The Neoproterozoic Era (1000–541 million years ago, Ma) was characterized by dramatic environmental and evolutionary change, including at least two episodes of extensive, low-latitude glaciation, potential changes in the redox structure of the global ocean, and the origin and diversification of animal life. How these different events related to one another remains an active area of research, particularly how these environmental changes influenced, and were influenced by, the earliest evolution of animals. Animal multicellularity is estimated to have evolved in the Tonian Period (1000–720 Ma) and represents one of at least six independent acquisitions of complex multicellularity, characterized by cellular differentiation, three-dimensional body plans, and active nutrient transport. Compared with the other instances of complex multicellularity, animals represent the only clade to have evolved from wall-less, phagotrophic flagellates, which likely placed unique cytological and trophic constraints on the evolution of animal multicellularity. Here, we compare recent molecular clock estimates with compilations of the chromium isotope, micropaleontological, and organic biomarker records, suggesting that, as of now, the origin of animals was not obviously correlated to any environmental–ecological change in the Tonian Period. This lack of correlation is consistent with the idea that the evolution of animal multicellularity was primarily dictated by internal, developmental constraints and occurred independently of the known environmental–ecological changes that characterized the Neoproterozoic Era.

You do not currently have access to this content.