Sm-like (Lsm) proteins are found in all three domains of life. They are crucially involved in the RNA metabolism of prokaryotic organisms. To exert their function, they assemble into hexa- or heptameric rings and bind RNA via a conserved binding pocket for uridine stretches in the inner pore of the ring. Despite the conserved secondary structure of Lsm proteins, there are several features that lead to a structural diversification of this protein family that mediates their participation in a variety of processes related to RNA metabolism. Until recently, the cellular function of archaeal Sm-like proteins was not well understood. In this review, we discuss structural features of Lsm proteins with a strong focus on archaeal variants, reflect on the evolutionary development of archaeal Lsm proteins and present recent insights into their biological function.

You do not currently have access to this content.