To keep up with the pace of rapid discoveries in biomedicine, a plethora of research endeavors had been directed toward Rational Drug Development that slowly gave way to Structure-Based Drug Design (SBDD). In the past few decades, SBDD played a stupendous role in identification of novel drug-like molecules that are capable of altering the structures and/or functions of the target macromolecules involved in different disease pathways and networks. Unfortunately, post-delivery drug failures due to adverse drug interactions have constrained the use of SBDD in biomedical applications. However, recent technological advancements, along with parallel surge in clinical research have led to the concomitant establishment of other powerful computational techniques such as Artificial Intelligence (AI) and Machine Learning (ML). These leading-edge tools with the ability to successfully predict side-effects of a wide range of drugs have eventually taken over the field of drug design. ML, a subset of AI, is a robust computational tool that is capable of data analysis and analytical model building with minimal human intervention. It is based on powerful algorithms that use huge sets of ‘training data’ as inputs to predict new output values, which improve iteratively through experience. In this review, along with a brief discussion on the evolution of the drug discovery process, we have focused on the methodologies pertaining to the technological advancements of machine learning. This review, with specific examples, also emphasises the tremendous contributions of ML in the field of biomedicine, while exploring possibilities for future developments.

You do not currently have access to this content.