Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Article Type
Date
Availability
1-1 of 1
Jim Hanan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Emerg Top Life Sci (2019) 3 (6): 723-729.
Published: 14 November 2019
Abstract
Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.