Abstract

This article describes the pathways of eicosanoid synthesis, eicosanoid receptors, the action of eicosanoids in different physiological systems, the roles of eicosanoids in selected diseases, and the major inhibitors of eicosanoid synthesis and action. Eicosanoids are oxidised derivatives of 20-carbon polyunsaturated fatty acids (PUFAs) formed by the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (cytP450) pathways. Arachidonic acid (ARA) is the usual substrate for eicosanoid synthesis. The COX pathways form prostaglandins (PGs) and thromboxanes (TXs), the LOX pathways form leukotrienes (LTs) and lipoxins (LXs), and the cytP450 pathways form various epoxy, hydroxy and dihydroxy derivatives. Eicosanoids are highly bioactive acting on many cell types through cell membrane G-protein coupled receptors, although some eicosanoids are also ligands for nuclear receptors. Because they are rapidly catabolised, eicosanoids mainly act locally to the site of their production. Many eicosanoids have multiple, sometimes pleiotropic, effects on inflammation and immunity. The most widely studied is PGE2. Many eicosanoids have roles in the regulation of the vascular, renal, gastrointestinal and female reproductive systems. Despite their vital role in physiology, eicosanoids are often associated with disease, including inflammatory disease and cancer. Inhibitors have been developed that interfere with the synthesis or action of various eicosanoids and some of these are used in disease treatment, especially for inflammation.

You do not currently have access to this content.