Acute myeloid leukemia (AML) is a heterogeneous disease of impaired myeloid differentiation and a caricature of normal hematopoiesis. Leukemic stem cells (LSCs) are responsible for long-term clonal propagation in AML just as hematopoietic stem cells (HSCs) sustain lifelong hematopoiesis. LSCs are often resistant to standard chemotherapy and are responsible for clinical relapse. Although AML is highly heterogeneous, determinants of stemness are prognostic for AML patient survival and can predict AML drug sensitivity. Therefore, one way to overcome challenges preventing efficacious treatment outcomes is to target LSC stemness. Metabolomic and lipidomic studies of serum and cells from AML patients are emerging to complement genomic, transcriptomic, epigenetic, and proteomic data sets to characterize and stratify AML. Recent studies have shown the value of fractionating LSCs versus blasts when characterizing metabolic pathways and implicate the importance of lipid balance to LSCs function. As more extensive metabolic studies coupled to functional in vivo assays are conducted on highly purified HSCs, bulk AML, and LSCs, the similarities and differences in lipid homeostasis in stem-like versus more mature AML subtypes as well as from normal HSCs are emerging. Here, we discuss the latest findings from studies of lipid function in LSCs, with a focus on sphingolipids (SLs) as stemness/lineage fate mediators in AML, and the balance of fatty acid anabolism and catabolism fueling metabolic flexibility and drug resistance in AML. We also discuss how designing successful strategies to target lipid vulnerabilities and improve AML patient survival should take into consideration the hierarchical nature of AML.

You do not currently have access to this content.