The importance of Hox genes for the development and evolution of the vertebrate axial skeleton and paired appendages has been recognized for already several decades. The steady growth of genomic sequence data from an increasing number of vertebrate species, together with the improvement of methods to analyze genomic structure and interactions, as well as to control gene activity in various species has refined our understanding of Hox gene activity in development and evolution. Here, I will review recent data addressing the influence of Hox regulatory processes in the evolution of the fins and the emergence of the tetrapod limb. In addition, I will discuss the involvement of posterior Hox genes in the control of vertebrate axial extension, focusing on an apparently divergent activity that Hox13 paralog group genes have on the regulation of tail bud development in mouse and zebrafish embryos.

You do not currently have access to this content.