The unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are widely used eukaryotic model organisms. Research exploiting the tractability of these model systems has contributed significantly to our understanding of a wide range of fundamental processes. In this article, we outline the features of yeast that have similarly been exploited for undergraduate research training. We selected examples from published literature that demonstrate the utility of the yeast system for research-based learning embedded in the curriculum. We further describe a project which we designed for the team-based final-year dissertation projects module on our transnational joint programme, which investigates whether the expression and functions of the budding yeast RPL36 ribosomal protein paralogs are influenced by the overlapping long non-coding RNA genes. Students carry out the experimental procedures in a 2-week timetabled teaching block and exercise widely applicable biochemical techniques, including aseptic yeast cell culture and sample collection, RNA isolation, qRT-PCR quantitation, protein extraction and Western blot analysis, and cell cycle progression patterns using light microscopy and flow cytometry. It is challenging to design training programmes for undergraduates that are meaningful as well as practical and economical, but it is possible to transform active research projects into authentic research experiences. We consider yeast to be an ideal model organism for such projects. These can be adapted to the constraints of course schedules and explore fundamental biochemical topics which are evolutionarily conserved from yeast to mammals.

You do not currently have access to this content.