Abstract

There has been little progress for several decades in modalities to treat cervical cancer. While the cervix is a hormone-sensitive tissue, physiologic roles of estrogen receptor α (ERα), progesterone receptor (PR), and their ligands in this tissue are poorly understood. It has hampered critical assessments of data in early epidemiologic and clinical studies for cervical cancer. Experimental evidence obtained from studies using mouse models has provided new insights into the molecular mechanism of ERα and PR in cervical cancer. In a mouse model expressing human papillomavirus (HPV) oncogenes, exogenous estrogen promotes cervical cancer through stromal ERα. In the same mouse model, genetic ablation of PR promotes cervical carcinogenesis without exogenous estrogen. Medroxyprogesterone acetate, a PR-activating drug, regresses cervical cancer in the mouse model. These results support that ERα and PR play opposite roles in cervical cancer. They further support that ERα inhibition and PR activation may be translated into valuable treatment for a subset of cervical cancers.

You do not currently have access to this content.