Fat is the largest energy reserve in mammals. Most tissues are involved in fatty acid metabolism, but three are quantitatively more important than others: adipose tissue, skeletal muscle and liver. Each of these tissues has a store of triacylglycerol that can be hydrolysed (mobilized) in a regulated way to release fatty acids. In the case of adipose tissue, these fatty acids may be released into the circulation for delivery to other tissues, whereas in muscle they are a substrate for oxidation and in liver they are a substrate for re-esterification within the endoplasmic reticulum to make triacylglycerol that will be secreted as very-low-density lipoprotein. These pathways are regulated, most clearly in the case of adipose tissue. Adipose tissue fat storage is stimulated, and fat mobilization suppressed, by insulin, leading to a drive to store energy in the fed state. Muscle fatty acid metabolism is more sensitive to physical activity, during which fatty acid utilization from extracellular and intracellular sources may increase enormously. The uptake of fat by the liver seems to depend mainly upon delivery in the plasma, but the secretion of very-low-density lipoprotein triacylglycerol is suppressed by insulin. There is clearly cooperation amongst the tissues, so that, for instance, adipose tissue fat mobilization increases to meet the demands of skeletal muscle during exercise. When triacylglycerol accumulates excessively in skeletal muscle and liver, sometimes called ectopic fat deposition, then the condition of insulin resistance arises. This may reflect a lack of exercise and an excess of fat intake.

You do not currently have access to this content.