Diagnosing primary mitochondrial diseases is challenging in clinical practice. Although, defective oxidative phosphorylation (OXPHOS) is the common final pathway, it is unknown why different mtDNA or nuclear mutations result in largely heterogeneous and often tissue -specific clinical presentations. Mitochondrial tRNA (mt-tRNA) mutations are frequent causes of mitochondrial diseases both in children and adults. However numerous nuclear mutations involved in mitochondrial protein synthesis affecting ubiquitously expressed genes have been reported in association with very tissue specific clinical manifestations suggesting that there are so far unknown factors determining the tissue specificity in mitochondrial translation. Most of these gene defects result in histological abnormalities and multiple respiratory chain defects in the affected organs. The clinical phenotypes are usually early-onset, severe, and often fatal, implying the importance of mitochondrial translation from birth. However, some rare, reversible infantile mitochondrial diseases are caused by very specific defects of mitochondrial translation. An unbiased genetic approach (whole exome sequencing, RNA sequencing) combined with proteomics and functional studies revealed novel factors involved in mitochondrial translation which contribute to the clinical manifestation and recovery in these rare reversible mitochondrial conditions.

Introduction

All eukaryotic cells contain both genomic and mtDNA and two separate protein synthesis machineries [1]. Mitochondria are essential eukaryotic organelles with the main function to produce the majority of cellular energy by oxidative phosphorylation (OXPHOS). While the majority of OXPHOS components (complexes I–IV), the ATP synthase (complex V), and various factors required for mtDNA maintenance (replication, transcription, copy number control) are encoded within the nucleus, 13 polypeptides, two ribosomal RNAs (mt-rRNAs), and 22 transfer RNAs (mt-tRNAs) are encoded within the mtDNA [1]. The expression of these molecules is fundamental for cellular functioning and is closely co-ordinated with nuclear gene expression. Mutations in some nuclear genes can cause secondary instability of the mitochondrial genome in the form of depletion (decreased number of mtDNA molecules in the cell), multiple deletions or accumulation of point mutations, which in turn leads to mitochondrial diseases inherited in a Mendelian fashion [2]. Expression of the mitochondrial genome is initiated by transcription of the mtDNA from bidirectional heavy and light strand promoters to produce two polycistronic transcripts [3]. Instead of initiating at individual gene-specific promoters, transcription of mammalian mtDNA initiates from single promoters for H- and L-strand transcription, and progresses around almost the entire length of the genome [4]. Following endonucleolytic processing individual mitochondrial mRNA (mt-mRNA), mitochondrial rNA (mt-rRNA), and mitochondrial tRNA (mt-tRNA) transcripts undergo post-transcriptional modifications [5,6]. The transcription machinery of the mtDNA is regulated by several transcription factors TFAM, TEFM and TFB2M and mitochondrial RNA polymerase POLRMT [7]. The 13 mtDNA encoded components of the OXPHOS machinery using the mitochondrial translation mechanism are synthesized within the mitochondria, with the participation of the mitoribosome [8,9]. The assembled mitoribosome translates the mt-mRNAs and synthesizes proteins that are rapidly inserted into the inner mitochondrial membrane and integrated into their relevant complexes to form the OXPHOS system [10].

Approximately one-third of mitochondrial disorders have a presumed nuclear genetic defect of mitochondrial transcription and translation [11]. The identification of the molecular basis of this group has been particularly challenging and the recent availability of massively parallel sequencing have revealed several new disease genes, and unraveled new pathogenic mechanisms. Here, we present an overview of these tissue specific diseases (Figure 1).

Summary of the genes and disease mechanisms implicated in mitochondrial translation deficiencies with associated clinical phenotypes

Defects of mitochondrial transcription

There are several genes involved in the initiation (POLRMT, TFAM, TFB2B) and elongation (TEFM, MTERF1) in transcription of mtDNA, however only mutations in TFAM have been shown to cause human diseases to date (Table 1) [12].

Table 1
Defects of mitochondrial transcription, pre-RNA, mRNA processing and stabilization
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
TFAM Transcription factor A Mitochondrial DNA depletion syndrome 15 Infancy AR 617156 Stiles et al. (2016) [12
TRMT10C tRNA methyltransferase 10 Combined OXPHOS deficiency 30 Infancy AR 616974 Metodiev et al. (2016) [13
HSD17B10 (MRPP2) NAD(P)(H)-dependent short-chain dehydrogenase/reductases Global developmental delay, epilepsy, and cardiac involvement Early childhood AR 300256 Oerum et al. (2017) [14],
Falk et al. (2016) [15
ELAC2 RNase Z Hypertrophic cardiomyopathy, hypotonia, lactic acidosis, delayed psychomotor development Early childhood AR 605367 Haack et al. (2013) [16],
Shinwari et al. (2017) [17],
Akawi et al. (2016) [18
FASTKD2 fas activated serine-threonine kinase domain 2 protein Later onset, milder MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode)-like syndrome with seizures, stroke-like episodes and optic atrophy. Mitochondrial encephalomyopathy with developmental delay, hemiplegia, convulsions, asymmetrical brain atrophy Childhood AR 612322 Ghezzi et al. (2008) [19],
Yoo et al. 2017 [20
MTPAP Mitochondrial poly-A polymerase Progressive spastic ataxia with optic atrophy Juvenile or early childhood AR 613672 Crosby et al. (2010) [21
LRPPRC Leucine-rich PPR-motif containing protein Leigh syndrome French–Canadian variant (LSFC) Infantile AR 220111 Mootha et al. (2003) [22], Olahova et al. (2015) [23],
Han et al. (2017) [24
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
TFAM Transcription factor A Mitochondrial DNA depletion syndrome 15 Infancy AR 617156 Stiles et al. (2016) [12
TRMT10C tRNA methyltransferase 10 Combined OXPHOS deficiency 30 Infancy AR 616974 Metodiev et al. (2016) [13
HSD17B10 (MRPP2) NAD(P)(H)-dependent short-chain dehydrogenase/reductases Global developmental delay, epilepsy, and cardiac involvement Early childhood AR 300256 Oerum et al. (2017) [14],
Falk et al. (2016) [15
ELAC2 RNase Z Hypertrophic cardiomyopathy, hypotonia, lactic acidosis, delayed psychomotor development Early childhood AR 605367 Haack et al. (2013) [16],
Shinwari et al. (2017) [17],
Akawi et al. (2016) [18
FASTKD2 fas activated serine-threonine kinase domain 2 protein Later onset, milder MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode)-like syndrome with seizures, stroke-like episodes and optic atrophy. Mitochondrial encephalomyopathy with developmental delay, hemiplegia, convulsions, asymmetrical brain atrophy Childhood AR 612322 Ghezzi et al. (2008) [19],
Yoo et al. 2017 [20
MTPAP Mitochondrial poly-A polymerase Progressive spastic ataxia with optic atrophy Juvenile or early childhood AR 613672 Crosby et al. (2010) [21
LRPPRC Leucine-rich PPR-motif containing protein Leigh syndrome French–Canadian variant (LSFC) Infantile AR 220111 Mootha et al. (2003) [22], Olahova et al. (2015) [23],
Han et al. (2017) [24

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

TFAM

The TFAM gene encodes a mitochondrial transcription factor essential for initiating mtDNA transcription, replication, and nucleoid packaging [25]. Pathogenic mutations in TFAM are linked to an autosomal recessive disorder with infantile-onset progressive fatal liver failure. Infants were born with intrauterine growth restriction and developed hepatopathy with elevated transaminases, conjugated hyperbilirubinemia, and hypoglycemia. Liver failure and death occurred in early infancy [12]. The mtDNA copy number has been shown to be decreased in patient liver, muscle, and fibroblasts. Liver biopsy shows cirrhosis, micro- and macrovesicular steatosis and cholestasis and abnormal mitochondrial morphology on electron microscopy. Biochemical enzymology in muscle showed increased citrate synthase activity and borderline reduced RC enzyme activities [12]. Based on these findings, it is likely, that mutations in other genes involved in mitochondrial transcription also result in low mtDNA copy numbers and a combined defect of the enzymes of the respiratory chain.

It has been implicated that TFAM-mediated alterations may be an important mechanism in neurodegeneration in Alzheimer, Huntington, Parkinson, and other neurodegenerative diseases [13]. Because altered TFAM and mtDNA levels have been detected in multiple models of neurodegeneration, we suggest that the regulation of TFAM may be a key mechanism in disease pathomechanism or progression [13].

Maturation of the primary transcript: pre-RNA processing

Transcription of the mitochondrial genome generates large polycistronic transcripts punctuated by the 22 mt-tRNAs that are conventionally cleaved by the RNase P-complex and the RNase Z activity of ELAC2 at 5′ and 3′ ends, respectively (Table 1) [5,6].

TRMT10C/MRPP1

Mutations in TRMT10C (encoding the mitochondrial RNase P protein 1 (MRPP1)) were reported in infants presenting at birth with lactic acidosis, hypotonia, feeding difficulties, and deafness [13]. Both individuals died at 5 months after respiratory failure. MRPP1, along with MRPP2 and MRPP3, form the mitochondrial ribonuclease P (mt-RNase P) complex that cleaves the 5′ ends of mt-tRNAs from polycistronic precursor transcripts. Analyses of fibroblasts from affected individuals harboring TRMT10C missense variants revealed decreased protein levels of MRPP1 and an increase in mt-RNA precursors indicative of impaired mt-RNA processing and defective mitochondrial protein synthesis [13].

HSD17B10/MRPP2

MRPP2 (also known as HSD10/SDR5C1) belongs to the short-chain dehydrogenase/reductases (SDR) family and is involved in the catabolism of isoleucine and steroid metabolism [14]. MRPP2 also interacts in a complex with MRPP1 (TRMT10C) and MRPP3 (also known as PRORP), proteins involved in 5′-end processing of mitochondrial precursor tRNA [5].

A Caucasian boy with intractable epilepsy and global developmental delay carried a novel p.(Lys212Glu) mutation in the X-linked gene, HSD17B10 encoding for mitochondrial SDR5C1 [15]. Mutations in HSD17B10 lead to a metabolic disorder of fatty and amino acid metabolism, and affect an essential subunit of human mitochondrial RNase P, the enzyme responsible for 5′-processing and methylation of purine-9 of mt-tRNAs. The pathogenicity of the mutation is due to a general mitochondrial dysfunction caused by reduction in maturation of mt-tRNAs [15].

Two additional patients were reported with variable severity of developmental delay, epilepsy, and cardiac involvement. As a hallmark of the disease, urinary organic acid analysis showed elevated levels of 2-methyl-3-hydroxybutyric acid and tiglylglycine, and abnormalities were also detected in the acyl-carnitine spectrum in some cases [14].

ELAC2 (RNase Z)

Mt-tRNAs are cleaved by the RNase Z activity of ELAC2 at their 3′ ends [17]. Mutations in ELAC2 have been originally identified in five individuals with infantile hypertrophic cardiomyopathy and complex I deficiency and accumulation of mt-tRNA precursors in skeletal muscle and fibroblasts of the affected individuals, associated with impaired mitochondrial translation [17]. The association of severe, infantile cardiomyopathy and ELAC2 mutations was supported by 16 additional cases, suggesting that it is a relatively frequent cause of severe infantile-onset hypertrophic or dilated cardiomyopathy. The p.(Phe154Leu) variant has a severe effect with poor prognosis [18]. Affected children in a consanguineous Pakistani family with a homozygous splice-site mutation in ELAC2 presented with intellectual disability and minimal cardiac involvement [19].

Maturation of the primary transcript: mRNA processing and stability

FASTKD2

Mitochondrial encephalomyopathy with developmental delay, hemiplegia, convulsions, asymmetrical brain atrophy, and low cytochrome c oxidase (COX) activity in skeletal muscle were reported in patients with mutations in FASTKD2, encoding the fas activated serine-threonine kinase domain 2 protein [20]. FASTKD2 has a role in the assembly of the large ribosomal subunit and is required for 16S rRNA stability [26,27]. The tagged recombinant FASTKD2 protein co-localized with mitochondrial markers, and membrane potential-dependent mitochondrial import was demonstrated in isolated mitochondria in vitro. Later onset, milder mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode (MELAS)-like syndrome with seizures, stroke-like episodes, and optic atrophy has been described in a Korean family with compound heterozygous mutations in FASTKD2 [28]. FASTKD2 has been also implicated as a target for modulating neurodegeneration and memory loss in ageing and dementia [29]. Furthermore, FASTKD2 has been also shown to mediate apoptosis in breast and prostate cancers [21].

MTPAP

In human mitochondria, polyadenylation of mRNA, undertaken by the nuclear-encoded mitochondrial poly(A) RNA polymerase, is essential for maintaining mitochondrial gene expression. An autosomal-recessive mutation has been identified in the MTPAP gene causing spastic ataxia with optic atrophy in the Old Order Amish population. Mt-mRNAs from affected individuals were shown to have severely truncated poly(A) tails [21]. Both mutated and wild-type MTPAP localized to the mitochondrial RNA-processing granules but the mutant protein generated only short oligo(A) extensions on RNA substrates, causing dysregulation of post-transcriptional expression leading to the reduction in respiratory chain complexes [30].

LRPPRC

LRPPRC is a mt-mRNA chaperone that relaxes secondary structures [31] enabling polyadenylation and co-ordinated translation of mitochondrially encoded proteins [32,33]. In addition, LRPPRC has been documented in various tumors, contributing to the apoptosis resistance of human cancer cells [34] and it has been identified as an inhibitor of autophagy and mitophagy via interaction with the mitophagy initiator Parkin [35].

A homozygous founder mutation in the LRPPRC gene (c.1061C>T, p.(Ala354Val)) was identified as one of the first nuclear mitochondrial disease genes [22], associated with the French-Canadian variant of Leigh Syndrome (LSFC) and COX deficiency. LSFC is characterized by Leigh syndrome (a subacute neurodegeneration of the brainstem and basal ganglia), developmental delay, hypotonia, mild facial dysmorphism, and high mortality due to episodes of severe acidosis and coma that typically arise in the first year of life [22]. Subsequently, LSFC has also been described outside Quebec in ten patients from seven unrelated families of Caucasian, Pakistani, Indian, Turkish, and Iraqi origin [23] and in a Chinese boy with a milder phenotype [24]. The phenotype of these patients resembles LSFC, but in addition, neonatal cardiomyopathy or congenital malformations of the heart and the brain were reported. Decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity were associated with abnormal COX assembly and reduced steady-state levels of numerous OXPHOS subunits in patients’ fibroblasts and skeletal muscle. In some patients complex I was also reduced, suggesting the role of LRPPRC in tissue-specific post-transcriptional regulation of mt-mRNAs [23].

Diseases caused by abnormal tRNA modifications

Mt-tRNA modifications play a crucial role in regulating cellular energy delivery in response to local needs, and dysfunctional modifications may participate in the pathomechanism of mt-tRNA-related disorders (Table 2) [36].

Table 2
Defects of mt-tRNA modification
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
TRMU tRNA 5-methylamino-methyl-2-
thiouridy-late methyl-transferase 
Reversible infantile liver failure Infantile AR 613070 Zeharia et al. (2009) [37]
Schara et al. (2011) [38]
Uusimaa et al. (2011) [39]
Gaignard et al. (2013) [40
MTO1 Mitochondrial translation optimization 1 homolog Hypertrophic cardiomyopathy and lactic acidosis Infantile AR 614702 Ghezzi et al. (2012) [41],
Baruffini et al. (2013) [42]
O’Byrne et al. (2018) [43
GTPBP3 GTP-binding protein 3 Hypertrophic or dilated cardiomyopathy, encephalopathy (hypotonia, developmental delay, seizures, visual impairment), lactate↑ Early childhood AR 608536 Kopajtich et al. (2014) [44
NSUN3 5-methylcytosine (m(5)C) methyltransferase Developmental delay, microcephaly, failure to thrive, lactic acidosis, muscular weakness, external ophthalmoplegia, and nystagmus Neonatal AR 617491 van Haute et al. (2016) [45
TRMT5 tRNA methyltransferase 5 Exercise intolerance, lactic acidosis, growth retardation, developmental delay, complex hereditary spastic paraparesis Childhood neonatal AR 611023 Powell et al. (2015) [46]
Tarnopolsky et al. (2017) [47
TRIT1 tRNA isopentenyl-transferase Encephalopathy and myoclonic epilepsy, brain abnormalities Childhood AR  Yarham et al. (2014) [48]
Kernohan et al. (2017) [49
TRNT1 tRNA nucleotidyltransferase Retinitis pigmentosa, erythrocitic microcytosis; sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay Neonatal, juvenile AR 612907 Chakraborty et al. (2014) [50]
DeLuca et al. (2016) [51
PUS1 Pseudouridine synthase Myopathy, lactic acidosis, and sideroblastic anemia (MLASA1) Early childhood to adult age AR 608109 Bykhovskaya et al. (2004) [52]
Fernandez-Vizarra et al. (2007) [53]
Metodiev et al. (2015) [54
MTFMT Methionyl-tRNA formyltransferase Leigh encephalopathy, white matter lesions, microcephaly, mental retardation, ataxia, and muscular hypotonia Childhood AR 611766 Tucker et al. (2011) [55]
Neeve et al. (2013) [56]
Haack et al. (2014) [57
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
TRMU tRNA 5-methylamino-methyl-2-
thiouridy-late methyl-transferase 
Reversible infantile liver failure Infantile AR 613070 Zeharia et al. (2009) [37]
Schara et al. (2011) [38]
Uusimaa et al. (2011) [39]
Gaignard et al. (2013) [40
MTO1 Mitochondrial translation optimization 1 homolog Hypertrophic cardiomyopathy and lactic acidosis Infantile AR 614702 Ghezzi et al. (2012) [41],
Baruffini et al. (2013) [42]
O’Byrne et al. (2018) [43
GTPBP3 GTP-binding protein 3 Hypertrophic or dilated cardiomyopathy, encephalopathy (hypotonia, developmental delay, seizures, visual impairment), lactate↑ Early childhood AR 608536 Kopajtich et al. (2014) [44
NSUN3 5-methylcytosine (m(5)C) methyltransferase Developmental delay, microcephaly, failure to thrive, lactic acidosis, muscular weakness, external ophthalmoplegia, and nystagmus Neonatal AR 617491 van Haute et al. (2016) [45
TRMT5 tRNA methyltransferase 5 Exercise intolerance, lactic acidosis, growth retardation, developmental delay, complex hereditary spastic paraparesis Childhood neonatal AR 611023 Powell et al. (2015) [46]
Tarnopolsky et al. (2017) [47
TRIT1 tRNA isopentenyl-transferase Encephalopathy and myoclonic epilepsy, brain abnormalities Childhood AR  Yarham et al. (2014) [48]
Kernohan et al. (2017) [49
TRNT1 tRNA nucleotidyltransferase Retinitis pigmentosa, erythrocitic microcytosis; sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay Neonatal, juvenile AR 612907 Chakraborty et al. (2014) [50]
DeLuca et al. (2016) [51
PUS1 Pseudouridine synthase Myopathy, lactic acidosis, and sideroblastic anemia (MLASA1) Early childhood to adult age AR 608109 Bykhovskaya et al. (2004) [52]
Fernandez-Vizarra et al. (2007) [53]
Metodiev et al. (2015) [54
MTFMT Methionyl-tRNA formyltransferase Leigh encephalopathy, white matter lesions, microcephaly, mental retardation, ataxia, and muscular hypotonia Childhood AR 611766 Tucker et al. (2011) [55]
Neeve et al. (2013) [56]
Haack et al. (2014) [57

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

Wobble base modifications (TRMU, MTO1, GTPBP3, NSUN3)

TRMU

Reversible infantile liver failure is caused by autosomal recessive mutations in the tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase [37–40] and the majority of these patients show complete spontaneous recovery if they survive the first year of life [58]. TRMU is an enzyme responsible for the thiouridylation of mt-tRNAGlu, mt-tRNAGln, and mt-tRNALys, which requires cysteine. Cysteine is an essential amino acid in the first months of life, because of the physiologically low activity of the cystathionine γ-lyase (cystathionase) enzyme in infants [59]. The age-dependent, partially reversible clinical presentation of TRMU mutations resembles reversible infantile respiratory chain deficiency due to them. 14674T>C/G mutation in mt-tRNAGlu. Low dietary cysteine may be a common trigger of the clinical presentation of both diseases [60]. Mutations in TRMU have been also suggested to aggravate the deafness phenotype of the mitochondrial m.1555A>G 12S rRNA mutation [61], however the variants reported here were rather variants of unknown significance and had no involvement in liver disease.

MTO1

MTO1 (mt-tRNA Translation Optimization 1), an evolutionarily conserved gene encodes the enzyme that catalyzes the 5-taurinomethylation of the wobble uridine base in mt-tRNAGln, tRNAGlu, and tRNALys. This post-transcriptional modification increases the accuracy and efficiency of mtDNA translation [61].

The first patients carrying recessive mutations in the MTO1 gene were identified in 2012 [41]. The clinical presentation was severe infantile hypertrophic cardiomyopathy. Two patients died within the first days of life, while the third unrelated subject showed marked improvement of the cardiomyopathy in childhood, and at the age of 19 years he suffered a stable hypertrophic cardiomyopathy with normal ejection fraction and moderate bilateral optic atrophy. Five additional patients were presented with hypertrophic cardiomyopathy and lactic acidosis in association with encephalopathy and psychomotor delay [42]. All patients complained of first symptoms soon after birth and two of them died in their first days of life. More recently, in a large cohort of 35 cases of MTO1 deficiency [61], none of the patients had bi-allelic null variants suggesting that the complete loss of MTO1 is not viable. The most common features at presentation are lactic acidosis and hypertrophic cardiomyopathy with global developmental delay/intellectual disability (97%), feeding difficulties (49%), hypotonia (63%) failure to thrive (34%), seizures (34%), optic atrophy (52%), and ataxia (21%) and low activity of respiratory chain enzymes I, III, and IV. A subjective clinical improvement was observed in some patients on ketogenic diet and therapy with dichloroacetate [43].

GTPBP3

Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, due to the abnormal formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of mt-tRNAs [44]. Eleven individuals from nine families were reported with recessive mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3 [44]. All patients presented with lactic acidosis and nine developed hypertrophic cardiomyopathy, but in contrast with individuals with mutations in MTO1 (involved in the same modification), most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome [44]. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle.

NSUN3

The recently characterized 5-methylcytosine (m(5)C) methyltransferase, NSun3 links m(5)C RNA modifications with energy metabolism [45]. Loss of function mutations in NSUN3 a previously uncharacterized m(5)C methyltransferase, have been identified in a patient who developed combined developmental delay, microcephaly, failure to thrive, recurrent lactic acidosis, muscular weakness, external ophthalmoplegia, and nystagmus at 3 months of age with combined OXPHOS deficiency in skeletal muscle [45].

Position 37 modifications (TRMT5, TRIT1)

TRMT5

Autosomal recessive mutations in the TRMT5 gene (encoding tRNA methyltransferase 5) were reported in two patients with strikingly different clinical presentation [46]. While both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory chain complex deficiencies in skeletal muscle, one presented with failure to thrive and hypertrophic cardiomyopathy in childhood, and the other was an adult with a life-long history of exercise intolerance. Recently, TRMT5 mutations were also linked to complex hereditary spastic paraparesis [47]. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mt-tRNA, predominantly in skeletal muscle.

TRIT1

The first pathogenic mutation in TRIT1 (encoding the tRNA isopentenyltransferase, responsible for i6A37 modification of some cytosolic and mt-tRNAs) has been identified in two siblings with encephalopathy and myoclonic epilepsy and severe combined mitochondrial respiratory chain defects [48]. It has been show that a previously reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation also acts by causing a loss of i6A37 modification, demonstrating that mt-tRNASerUCN is the substrate for TRIT1 [48]. Four individuals from three unrelated families ‘matched’ by GeneMatcher and MatchMakerExchange confirmed the role of TRIT1 in human disease [49]. The patients had microcephaly, developmental delay, epilepsy, and decreased levels of selected mitochondrial proteins [49].

CCA adding: TRNT1

TRNT1 (CCA-adding transfer RNA nucleotidyl transferase) enzyme deficiency is a complex metabolic disease caused by defective post-transcriptional modification of mitochondrial and cytosolic tRNAs [62]. Mutations in TRNT1 cause congenital sideroblastic anemia, immunodeficiency, fevers, and developmental delay (SIFD) [50]. Further mutations in TRNT1 have been reported in patients with a combination of abnormal blood cells (sideroblastic anemia, B lymphocyte or combined B and T immunodeficiency), metabolic crisis, and multisystem mitochondrial disease (retinitis pigmentosa, hepatosplenomegaly, exocrine pancreatic insufficiency, and renal tubulopathy [62,63–65]. Other clinical features include sensorineural deafness, cerebellar atrophy, brittle hair, partial villous atrophy, and nephrocalcinosis. TRNT1 mutations cause a spectrum of symptoms ranging from a childhood-onset complex disease with manifestations in most organs to an adult-onset isolated retinitis pigmentosa presentation. Acute management of these patients includes transfusion for anemia, fluid and electrolyte replacement, immunoglobulin therapy, and potentially bone marrow transplantation. A defect of 3′-CCA addition to mt-tRNAs (tRNA(Cys), tRNA(LeuUUR) and tRNA(His)) demonstrates a novel pathomechanism [62].

Pseudouridylation: PUS1

Pseudouridylate synthase 1 (PUS1) is an enzyme located in both nucleus and mitochondria, which converts uridine into pseudouridine in several cytosolic and mt-tRNA positions and increases the efficiency of protein synthesis in both compartments [66,52]. Myopathy, lactic acidosis, sideroblastic anemia (MLASA) syndrome is a rare autosomal recessive disease caused by recessive mutations in PUS1 encoding the pseudouridine synthase 1 enzyme [52–54,66]. A similar phenotype has been observed in mutations in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase [67]. Patients in consanguineous families of Persian, Jewish, and Italian origins presented with mental retardation, dysmorphic features, lactic acidosis, myopathy, sideroblastic anemia, and low activity of complexes 1 and 4 of the respiratory chain in muscles [53,54,68]. Some patients were reported with a mild phenotype of sideroblastic anemia and muscle weakness in adult age [54,69]. A double localization of PUS1 has been demonstrated, the isoform localized to the nucleus is predicted to be shorter (isoform 2) than the mitochondrial isoform, which contains an N-terminal mitochondrial targetting sequence. The structural differences in nuclear compared with mitochondrial isoforms of PUS1 may be implicated in the variability of the clinical presentations in MLASA [53].

Formylation of the mitochondrial methionine tRNA (Met-tRNAMet)

The first mutations in the MTFMT gene in patients with Leigh syndrome and combined respiratory chain deficiency were reported by Tucker et al. [55]. In the past 5 years, several patients have been reported with MTFMT mutations and the clinical presentation is variable (Leigh encephalopathy, white matter lesions, microcephaly, mental retardation, ataxia, and muscular hypotonia) but often milder and later onset than other genetic forms of Leigh syndrome [56,57,70]. The mutations are usually loss-of-function mutations resulting in a severe decrease in MTFMT protein and reduced steady-state levels of complex I and IV subunits. The c.626C>T mutation has been detected in >80% of patients with MTFMT deficiency, and represents a relatively frequent cause of Leigh syndrome.

Diseases of tRNA aminoacylation: mt-tRNA synthetases

Defects in nuclear genes encoding mitochondrial aminoacyl-tRNA synthetases (mt-ARSs) are increasingly linked to a variety of pediatric and adult onset tissue specific disorders [71]. Several recent reviews [72–75] presented detailed information, therefore here, we only provide a short summary of the most common phenotypes of mt-tRNA synthetase-related diseases (Table 3).

Table 3
Mutations in aminoacyl-tRNA synthetases
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
DARS2 Aspartyl-tRNA sythetase 2 - Leukoencephalopathy with brainstem and spinal cord involvement (LBSL)
- Paroxysmal exercise-induced gait ataxia 
Childhood or adulthood AR 610956 Scheper et al. (2007) [76]
Isohanni et al. (2010) [77]
Miyake et al. (2011) [78]
van Berge et al. (2014) [79]
Shimojima et al. (2017) [80]
Pinto et al. (2014) [81]
Synofzik et al. (2011) [82
RARS2 Arginyl-tRNA
synthetase 2 
Pontocerebellar hypoplasia type 6 (PCHD-6) Neonatal or
early childhood 
AR 611523 Edvardson et al. (2007) [83]
Rankin et al. (2010) [84]
Cassandrini et al. (2013) [85]
Li et al. (2015) [86]
Lühl et al. (2016) [87
EARS2 Glutamyl-tRNA synthetase 2 Leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL); multiple congenital anomalies and multisystem dysfunction dysgenesis of corpus callosum Congenital or
infantile 
AR 612799 Steenweg et al. (2012) [88]
Talim et al. (2013) [89]
Kevelam et al. (2016) [90]
Güngör et al. (2016) [91]
Şahin et al. (2016) [92
MARS2 Methionyl-tRNA synthetase 2 Autosomal recessive spastic ataxia with leukoencephalopathy Juvenile or adulthood AR 609728 Bayat et al. (2012) [93]
Webb et al. (2015) [94
FARS2 Phenylalanyl-tRNA synthetase 2 Alpers syndrome, encephalopathy, epilepsy, lactic acidosis, spastic paraplegia Neonatal or infantile AR 611592 Elo et al. (2012) [95]
Shamseldin et al. (2012) [96]
Yang et al. (2016) [97
AARS2
 
Alanyl-tRNA synthetase 2 - Hypertrophic cardiomyopathy
- Ovario-leukodystrophy
- Leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) 
Infantile to adulthood AR 614096 Götz et al. (2011) [98]
Taylor et al. (2014) [99]
Dallabona et al. (2014) [100]
Lynch et al. (2016) [101]
Szpisjak et al. (2017) [102
YARS2 Tyrosyl-tRNA synthetase MLASA2, gastrointestinal difficulties, cardiomyopathy Infantile AR 613561 Riley et al. (2010) [67]
Sasarman et al. (2012) [103]
Shahni et al. (2013) [104]
Riley et al. (2013) [105]
Nakajima et al. (2014) [106
SARS Seryl-tRNA synthetase 2 - HUPRA syndrome (hyperuricemia, pulmonary hypertension, renal failure in infancy, and alkalosis)
- Progressive spastic paresis 
Infantile AR 613845 Belostotsky et al. (2011) [107]
Linnankivi et al. (2016) [108
HARS2 Histidyl-tRNA synthetase 2 Perrault syndrome (sensorineural deafness, ovarian dysgenesis) Juvenile or adulthood AR 600783 Pierce et al. (2011) [109
LARS2 Leucyl-tRNA synthetase Perrault syndrome (sensorineural deafness, ovarian dysgenesis)
hydrops, lactic acidosis, and sideroblastic anemia 
Juvenile
neonatal 
AR 604544 Pierce et al. (2013) [110]
Soldà et al. (2016) [111]
Demain et al. (2017) [112]
Riley et al. (2016) [113
TARS2 Threonyl-tRNA synthetas Mitochondrial encephalomyopathy
Axial hypotonia and limb hypertonia, psychomotor delay, and high levels of blood lactate 
Infantile AR 612805 Diodato et al. (2014) [114
NARS2 Asparginyl-tRNA synthetase Non-syndromic deafness, Leigh syndrome, Alpers syndrome, infantile onset neurodegenerative disorder Infantile AR 612803 Sofou et al. (2015) [115]
Vanlander et al. (2015) [116]
Simon et al. (2015) [117]
Mizuguchi et al. (2017) [118
CARS2 Cysteinyl-tRNA synthetas Combined oxidative phosphorylation deficiency-27 (COXPD27); severe epileptic encephalopathy and complex movement disorders Juvenile AR 612800 Coughlin et al. (2015) [119
IARS2 Ileucyl-tRNA synthetase - Skeletal dysplasia, infantile cataract, congenital neurotrophic keratitis, orbital myopathy, Leigh syndrome
- CAGSSS syndrome 
Adulthood or
infantile 
AR 616007
612801 
Schwartzentruber et al. (2014) [120]
Moosa et al. (2017) [121
VARS2 Valyl-tRNa synthetase Mitochondrial encephalomyopathy: psychomotor delay, epilepsy, mental retardation, growth hormone deficiency, hypogonadism Juvenile AR 612802 Diodato et al. (2014) [114]
Baertling et al. (2017) [122]
Alsemari et al. (2017) [123
WARS2 Tryptophanyl-tRNA synthetase - Autosomal recessive intellectual disability
- Mitochondrial encephalopathy
- Infantile-onset Parkinsonism 
Infantile or
juvenile 
AR 604733 Musante et al. (2017) [124]
Wortmann et al. (2017) [125]
Theisen et al. (2017) [126]
Burke et al. (2017) [127
PARS2 Prolyl-tRNA synthetase Non-syndromic hearing loss, Leigh syndrome, intellectual disability with epilepsy and severe myopathy, seizure Infantile AR 612036 Sofou et al. (2015) [128]
Mizuguchi et al. (2017) [118
GARS Glycil-tRNA synthetase - Charcot-Marie-Tooth disease, type 2D
- Neuropathy, distal hereditary motor, type VA
- Multisystem developmental delay, growth retardation- Lactic acidosis, cardiomyopathy, exercise intolerance 
Adulthood,
early childhood 
AD
AR 
601472
600794 
Antonellis et al. (2003) [129]
Oprescu et al. (2017) [130]
Nafisinia et al. (2017) [131]
McMillan et al. (2014) [132
KARS Lysyl-tRNA synthetases - Charcot-Marie-Tooth disease, recessive intermediate, B
- Deafness, autosomal recessive 89
- Visual impairment and progressive microcephaly
- Hypertrophic cardiomyopathy and combined mitochondrial respiratory chain defect 
Adult,
infantile,
childhood
 
AR 613641
613916 
Kohda et al. (2016) [133]
Verrigini et al. (2017) [134]
McMillan et al. (2015) [135]
Santos-Cortez et al. (2013) [136]
McLaughlin et al. (2010) [137
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
DARS2 Aspartyl-tRNA sythetase 2 - Leukoencephalopathy with brainstem and spinal cord involvement (LBSL)
- Paroxysmal exercise-induced gait ataxia 
Childhood or adulthood AR 610956 Scheper et al. (2007) [76]
Isohanni et al. (2010) [77]
Miyake et al. (2011) [78]
van Berge et al. (2014) [79]
Shimojima et al. (2017) [80]
Pinto et al. (2014) [81]
Synofzik et al. (2011) [82
RARS2 Arginyl-tRNA
synthetase 2 
Pontocerebellar hypoplasia type 6 (PCHD-6) Neonatal or
early childhood 
AR 611523 Edvardson et al. (2007) [83]
Rankin et al. (2010) [84]
Cassandrini et al. (2013) [85]
Li et al. (2015) [86]
Lühl et al. (2016) [87
EARS2 Glutamyl-tRNA synthetase 2 Leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL); multiple congenital anomalies and multisystem dysfunction dysgenesis of corpus callosum Congenital or
infantile 
AR 612799 Steenweg et al. (2012) [88]
Talim et al. (2013) [89]
Kevelam et al. (2016) [90]
Güngör et al. (2016) [91]
Şahin et al. (2016) [92
MARS2 Methionyl-tRNA synthetase 2 Autosomal recessive spastic ataxia with leukoencephalopathy Juvenile or adulthood AR 609728 Bayat et al. (2012) [93]
Webb et al. (2015) [94
FARS2 Phenylalanyl-tRNA synthetase 2 Alpers syndrome, encephalopathy, epilepsy, lactic acidosis, spastic paraplegia Neonatal or infantile AR 611592 Elo et al. (2012) [95]
Shamseldin et al. (2012) [96]
Yang et al. (2016) [97
AARS2
 
Alanyl-tRNA synthetase 2 - Hypertrophic cardiomyopathy
- Ovario-leukodystrophy
- Leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) 
Infantile to adulthood AR 614096 Götz et al. (2011) [98]
Taylor et al. (2014) [99]
Dallabona et al. (2014) [100]
Lynch et al. (2016) [101]
Szpisjak et al. (2017) [102
YARS2 Tyrosyl-tRNA synthetase MLASA2, gastrointestinal difficulties, cardiomyopathy Infantile AR 613561 Riley et al. (2010) [67]
Sasarman et al. (2012) [103]
Shahni et al. (2013) [104]
Riley et al. (2013) [105]
Nakajima et al. (2014) [106
SARS Seryl-tRNA synthetase 2 - HUPRA syndrome (hyperuricemia, pulmonary hypertension, renal failure in infancy, and alkalosis)
- Progressive spastic paresis 
Infantile AR 613845 Belostotsky et al. (2011) [107]
Linnankivi et al. (2016) [108
HARS2 Histidyl-tRNA synthetase 2 Perrault syndrome (sensorineural deafness, ovarian dysgenesis) Juvenile or adulthood AR 600783 Pierce et al. (2011) [109
LARS2 Leucyl-tRNA synthetase Perrault syndrome (sensorineural deafness, ovarian dysgenesis)
hydrops, lactic acidosis, and sideroblastic anemia 
Juvenile
neonatal 
AR 604544 Pierce et al. (2013) [110]
Soldà et al. (2016) [111]
Demain et al. (2017) [112]
Riley et al. (2016) [113
TARS2 Threonyl-tRNA synthetas Mitochondrial encephalomyopathy
Axial hypotonia and limb hypertonia, psychomotor delay, and high levels of blood lactate 
Infantile AR 612805 Diodato et al. (2014) [114
NARS2 Asparginyl-tRNA synthetase Non-syndromic deafness, Leigh syndrome, Alpers syndrome, infantile onset neurodegenerative disorder Infantile AR 612803 Sofou et al. (2015) [115]
Vanlander et al. (2015) [116]
Simon et al. (2015) [117]
Mizuguchi et al. (2017) [118
CARS2 Cysteinyl-tRNA synthetas Combined oxidative phosphorylation deficiency-27 (COXPD27); severe epileptic encephalopathy and complex movement disorders Juvenile AR 612800 Coughlin et al. (2015) [119
IARS2 Ileucyl-tRNA synthetase - Skeletal dysplasia, infantile cataract, congenital neurotrophic keratitis, orbital myopathy, Leigh syndrome
- CAGSSS syndrome 
Adulthood or
infantile 
AR 616007
612801 
Schwartzentruber et al. (2014) [120]
Moosa et al. (2017) [121
VARS2 Valyl-tRNa synthetase Mitochondrial encephalomyopathy: psychomotor delay, epilepsy, mental retardation, growth hormone deficiency, hypogonadism Juvenile AR 612802 Diodato et al. (2014) [114]
Baertling et al. (2017) [122]
Alsemari et al. (2017) [123
WARS2 Tryptophanyl-tRNA synthetase - Autosomal recessive intellectual disability
- Mitochondrial encephalopathy
- Infantile-onset Parkinsonism 
Infantile or
juvenile 
AR 604733 Musante et al. (2017) [124]
Wortmann et al. (2017) [125]
Theisen et al. (2017) [126]
Burke et al. (2017) [127
PARS2 Prolyl-tRNA synthetase Non-syndromic hearing loss, Leigh syndrome, intellectual disability with epilepsy and severe myopathy, seizure Infantile AR 612036 Sofou et al. (2015) [128]
Mizuguchi et al. (2017) [118
GARS Glycil-tRNA synthetase - Charcot-Marie-Tooth disease, type 2D
- Neuropathy, distal hereditary motor, type VA
- Multisystem developmental delay, growth retardation- Lactic acidosis, cardiomyopathy, exercise intolerance 
Adulthood,
early childhood 
AD
AR 
601472
600794 
Antonellis et al. (2003) [129]
Oprescu et al. (2017) [130]
Nafisinia et al. (2017) [131]
McMillan et al. (2014) [132
KARS Lysyl-tRNA synthetases - Charcot-Marie-Tooth disease, recessive intermediate, B
- Deafness, autosomal recessive 89
- Visual impairment and progressive microcephaly
- Hypertrophic cardiomyopathy and combined mitochondrial respiratory chain defect 
Adult,
infantile,
childhood
 
AR 613641
613916 
Kohda et al. (2016) [133]
Verrigini et al. (2017) [134]
McMillan et al. (2015) [135]
Santos-Cortez et al. (2013) [136]
McLaughlin et al. (2010) [137

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive; AD, autosomal dominant.

Mutations in each of the 19 human mt-ARS genes have been reported in human disease [74]. Glycyl-(GARS) and lysyl tRNA (KARS) synthetase genes encode both cytosolic and mitochondrial ARS enzymes, suggesting links between protein syntheses in these two distinct cellular compartments. Other cytosolic ARSs are encoded by a set of genes distinct from those encoding mt-ARSs [138]. All mt-ARSs genes are located in the nucleus, synthesized in the cytosol, imported into the mitochondria by an N-terminal pre-sequence (mitochondrial targetting sequence, MTS), which is cleaved upon entry into the mitochondria [139].

Despite being ubiquitously expressed, mutations in these genes show an unexpected variety of phenotypes, including many neurological disorders affecting the white matter (DARS2, EARS2, MARS2, AARS2) or causing epileptic encephalopathy (CARS2, FARS2, PARS2, TARS2, VARS2), pontocerebellar hypoplasia (RARS2), or intellectual disability (RARS2, WARS2). While other characteristic phenotypes are sensori-neuronal hearing loss and ovarian failure (Perrault syndrome: HARS2, LARS2), mitochondrial myopathy, MLASA: YARS2, hyperuricemia, pulmonary hypertension, renal failure, alkalosis (HUPRA: SARS2), cardiomyopathy (AARS2), or sensori-neural hearing loss (MARS2, NARS2). Besides the fact that new mutations are continuously discovered, neither the cause of the selective vulnerability, nor the exact molecular mechanisms leading to the diseases, are well understood. Degeneration of the central nervous system is speculated with early impairment of mitochondrial energy production that is crucial for myelination and maintenance of compact myelin [140]. Mutations in DARS2 and EARS2 result in very characteristic MRI phenotypes of leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) [76] and leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) [141]. LBSL caused by mutations in DARS2 is clinically characterized by slowly progressive pyramidal, cerebellar and dorsal column impairment, variably associated with delayed intellectual and/or motor development, cognitive impairment, epilepsy and peripheral neuropathy. The severity is ranging from early-onset severe disease, which can be fatal within the first years of life, to adult-onset forms [79,80]. The majority of patients carry a splice site mutation in intron 2, upstream of exon 3 [79]. Subgroups of patients with similar mutations (the common variants c.228-21_-20delTTinsC together with c.455G>T and c.492+2T>C) and a mild disease progression were identified. MRI abnormalities were correlated with the severity of the phenotype in mildly affected patients [81].

LTBL due to EARS2 mutations is characterized by a biphasic clinical course [141,89,90]. Approximately one-third of patients suffered from hypotonia soon after birth, followed by spastic tetraparesis, dystonia, visual impairment, and seizures. The majority (two-third) of patients had normal or mildly delayed early development, disease-onset in the second half of the first year of life with clinical regression, spasticity, loss of milestones, sometimes seizures and irritability, and an improvement in symptoms and MRI abnormalities from the second year of life.

A founder mutation, p.(Arg590Trp) in AARS2, encoding the mt alanyl tRNA synthetase may predominantly affect the heart (infantile cardiomyopathy) [98,99], while other AARS2 mutations are characterized by childhood- to adulthood-onset ataxia, spasticity, and dementia with frontal lobe dysfunction with leukoencephalopathy, cerebellar atrophy, and involvement of the corpus callosum on MRI [100]. Notably, all female patients also had ovarian failure. None of these cases suffered from a cardiomyopathy. Cardiomyopathy-associated mutations severely compromise aminoacylation, whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients [142]. Similar molecular mechanisms may underlie the tissue specific manifestations of the other mt tRNA synthetases.

A few patients presented severe infantile multisystem disease predominantly affecting the heart and brain associated with combined OXPHOS enzyme deficiency have been reported recently with autosomal recessive mutations in the QRSL1 gene [143,144]. No mitochondrial glutaminyl-tRNA synthetase (GlnRS) has been known and Gln-tRNAGln synthesis occurs via an indirect pathway involving QRSL1 (GatA). In this pathway, mt tRNAGln is first misaminoacylated by mt glutamyl-tRNA synthetase (GluRS) to form Glu-tRNAGln, which is then followed by transamidation to Gln-tRNAGln. This transamidation is processed by the hGatCAB heterotrimer. It has been shown that mutations in QRSL1 (GatA), a component of hGatCAB were associated with severe transamidation activity defects [143].

Perrault syndrome: LARS2, HARS2 (HSD17B4, CLLP, ERAL1)

Perrault syndrome is characterized by sensorineural hearing loss (SNHL) in males and females, and ovarian dysfunction in females. The SNHL is bilateral and ranges in severity from moderate with early-childhood onset to profound with congenital onset. Ovarian dysfunction ranges from gonadal dysgenesis (absent or streak gonads) manifesting as primary amenorrhea to primary ovarian insufficiency (POI) defined as cessation of menses before the age of 40. Fertility in affected males is reported as normal. Neurological features described in some affected women include developmental delay or intellectual disability, cerebellar ataxia, and motor and sensory peripheral neuropathy [145]. The diagnosis is confirmed by the presence of biallelic pathogenic variants in the genes HARS2, HSD17B4, LARS2, ERAL1, or CLPP. The fact that these seemingly different molecular mechanisms of mitochondrial translation can result in very similar, characteristic phenotypes raise the possibility of some common mechanisms.

Mitoribosomal structure and assembly: MRPL3, MRPS16, MRPS22, MRPL44, MRPL12, MRPS34, ERAL1

Autosomal recessive mutations in nuclear encoded mitochondrial ribosomal proteins are rare and cause severe, infantile onset disease with growth retardation, neurological phenotypes (MRPL3, MRPS16, MRPS22, MRPL12, MRPS34) and cardiac involvement (MRPL3, MRPL44) (Table 4) [10]. Autosomal recessive mutations in the ribosomal assembly factor ERAL1 have been associated with Perrault syndrome [145].

Table 4
Mutations in mitochondrial ribosomal proteins and ribosome assembly proteins
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
MRPL Mitochondrial ribosomal protein L3 Hypertrophic cardiomyopathy and psychomotor retardation Infantile AR 614582 Galmiche et al. (2011) [146
MRPS16 Mitochondrial ribosomal protein S16 Corpus callosum agenesia, hypothonia, and fatal neonatal lactic acidosis Neonatal AR 610498 Miller et al. (2004) [147
MRPS22 Mitochondrial ribosomal protein S22 Cornelia de Lange-like syndrome
Edema, cardiomyopathy and tubulopathy 
Neonatal AR 611719 Saada et al. (2007) [148]
Smits et al. (2011) [149
MRPL44 Mitochondrial ribosomal protein L44 Hypertrophic cardiomyopathy Neonatal AR 611849 Carroll et al. (2013) [150]
Distelmaier et al. (2015) [151
MRPL12 Mitochondrial ribosomal protein L12 Growth retardation and neurological deterioration Neonatal AR 602375 Serre et al. (2013) [152
MRPS34 Mitoribosomal ribosomal protein S34 Leigh syndrome and combined OXPHOS defects Neonatal AR 611994 Richman et al. (2015) [153]
Lake et al. (2017) [154
ERAL1 mt-rRNA chaperone Perrault syndrome Childhood or adult AR 607435 Newman et al. (2014) [143
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
MRPL Mitochondrial ribosomal protein L3 Hypertrophic cardiomyopathy and psychomotor retardation Infantile AR 614582 Galmiche et al. (2011) [146
MRPS16 Mitochondrial ribosomal protein S16 Corpus callosum agenesia, hypothonia, and fatal neonatal lactic acidosis Neonatal AR 610498 Miller et al. (2004) [147
MRPS22 Mitochondrial ribosomal protein S22 Cornelia de Lange-like syndrome
Edema, cardiomyopathy and tubulopathy 
Neonatal AR 611719 Saada et al. (2007) [148]
Smits et al. (2011) [149
MRPL44 Mitochondrial ribosomal protein L44 Hypertrophic cardiomyopathy Neonatal AR 611849 Carroll et al. (2013) [150]
Distelmaier et al. (2015) [151
MRPL12 Mitochondrial ribosomal protein L12 Growth retardation and neurological deterioration Neonatal AR 602375 Serre et al. (2013) [152
MRPS34 Mitoribosomal ribosomal protein S34 Leigh syndrome and combined OXPHOS defects Neonatal AR 611994 Richman et al. (2015) [153]
Lake et al. (2017) [154
ERAL1 mt-rRNA chaperone Perrault syndrome Childhood or adult AR 607435 Newman et al. (2014) [143

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

Translation initiation and elongation factors: GFM1, TUFM, TSFM, RMND1

The diseases caused by mutations in these factors are severe neonatal or infantile onset rare diseases affecting the brain (GFM1, TUFM, TSFM, RMND1), liver (GFM1), heart (TSFM), and other organs (RMND1) (Table 5) [11]. There are no diseases linked to mutations in translation termination factors to date. The most frequent gene defect in this group is caused by mutations in RMND1 leading to a severe defect of mitochondrial translation in all tissues. The RMND1 gene encodes an integral inner membrane mitochondrial protein that assembles into a large 240-kDa complex to support translation of the 13 polypeptides encoded on mtDNA [155,156]. Clinical and genetic features of 32 RMND1 patients from 21 pedigrees are hypotonia and developmental delay (75%), sensori-neural hearing loss (72%), nephropathy (53%), failure to thrive (53%), seizures (44%), microcephaly (41%), and spasticity (19%) [157]. The disease usually starts early, before 2 years of life, but patients with renal involvement show a later onset, better prognosis, and longer survival [157]. Four patients were successfully treated with kidney transplantation with a good clinical response.

Table 5
Mitochondrial translation initiation, elongation, termination, and release factors and translational activators
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
GFM1 Elongation factor G 1, mitochondrial (EFG1mtEncephalopathy with or without liver involvement Neonatal AR 609060 Coenen et al. (2004) [158]
Valente et al. (2007) [159]
Smits et al. (2011) [160
TUFM Elongation factor Tu, mitochondrial (EF-TUmtLactic acidosis, leukoencephalopathy, and polymicrogyria Neonatal AR 610678 Valente et al. (2007) [159]
Kohda et al. (2016) [161
TSFM Elongation factor Ts, mitochondrial (EF-TsmtEncephalomyopathy, hypertrophic cardiomyopathy Neonatal or childhood AR 610505 Smeitink et al. (2006) [162]
Smits et al. (2011) [160]
Shamseldin et al. (2012) [163]
Ahola et al. (2014) [164
RMND1 Regulator of microtubule dynamics 1 Deafness, myopathy, renal involvement, cardiomyopathy and a severe biochemical defect
Combined oxidative phosphorylation deficiency -11 
neonatal AR 614917
614922 
Janer et al. (2012) [144]
Garcia-Diaz et al. (2012) [145]
Taylor et al. (2014) [99]
Janer et al. (2015) [165]
Gupta et al. (2016) [166]
Ravn et al. (2016) [159]
Vinu et al. (2018) [167
C12orf65 Chromosome 12 ORF 65 Leigh syndrome, optic atrophy, ophthalmoplegia
Spastic paraplegia with optic atrophy and axonal neuropathy (SPG55) 
Infantile AR 613559 Antonicka et al. (2010) [156]
Pyle et al. (2014) [168]
Shimazaki et al. (2012) [157]
Spiegel et al. (2014) [169
TACO1 Translational activator of COX1 Leigh syndrome Juvenile AR 612958 Weraarpachai et al. (2009) [170]
Makrythanasis et al.(2014) [171
Gene Protein Clinical presentation Age of onset Mode of inheritance OMIM References 
GFM1 Elongation factor G 1, mitochondrial (EFG1mtEncephalopathy with or without liver involvement Neonatal AR 609060 Coenen et al. (2004) [158]
Valente et al. (2007) [159]
Smits et al. (2011) [160
TUFM Elongation factor Tu, mitochondrial (EF-TUmtLactic acidosis, leukoencephalopathy, and polymicrogyria Neonatal AR 610678 Valente et al. (2007) [159]
Kohda et al. (2016) [161
TSFM Elongation factor Ts, mitochondrial (EF-TsmtEncephalomyopathy, hypertrophic cardiomyopathy Neonatal or childhood AR 610505 Smeitink et al. (2006) [162]
Smits et al. (2011) [160]
Shamseldin et al. (2012) [163]
Ahola et al. (2014) [164
RMND1 Regulator of microtubule dynamics 1 Deafness, myopathy, renal involvement, cardiomyopathy and a severe biochemical defect
Combined oxidative phosphorylation deficiency -11 
neonatal AR 614917
614922 
Janer et al. (2012) [144]
Garcia-Diaz et al. (2012) [145]
Taylor et al. (2014) [99]
Janer et al. (2015) [165]
Gupta et al. (2016) [166]
Ravn et al. (2016) [159]
Vinu et al. (2018) [167
C12orf65 Chromosome 12 ORF 65 Leigh syndrome, optic atrophy, ophthalmoplegia
Spastic paraplegia with optic atrophy and axonal neuropathy (SPG55) 
Infantile AR 613559 Antonicka et al. (2010) [156]
Pyle et al. (2014) [168]
Shimazaki et al. (2012) [157]
Spiegel et al. (2014) [169
TACO1 Translational activator of COX1 Leigh syndrome Juvenile AR 612958 Weraarpachai et al. (2009) [170]
Makrythanasis et al.(2014) [171

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive.

Release factors: C12orf65

The C12orf65 gene encodes a protein that is critical for the release of newly synthesized proteins from mitochondrial ribosomes and its deficiency was reported in patients with Leigh syndrome and optic atrophy [172], in autosomal recessive hereditary spastic paraplegia 55 (SPG55) [168] or Charcot-Marie-Tooth disease type 6 [169], or Behr’s syndrome (optic atrophy, spastic paraparesis, motor neuropathy, ataxia, ophthalmoparesis) [170]. The spectrum of C12orf65-related phenotypes includes the triad of early-onset optic atrophy, axonal neuropathy, and spastic paraparesis as key clinical features [170,173].

Translational activators: TACO1

As mammalian mt-mRNAs do not have significant 5′ UTRs, alternate mechanisms exist to promote their translation. A defect in the translational activator of the mtDNA-encoded COX I subunit has been identified in a pedigree segregating late-onset Leigh syndrome and cytochrome c oxidase (COX) deficiency [174]. A single homozygous one-base-pair insertion has been identified in one large consanguineous Turkish family with teenage onset Leigh syndrome, cognitive decline, dystonia, and optic atrophy in TACO1 for translational activator of COX I [174,175]. No other mutations have been reported to date worldwide to confirm the phenotype. However, our group has detected the previously described TACO1 mutation in an additional consanguineous Turkish family (unpublished). The clinical phenotype in patients has been supported by the Taco1 mutant mice, which develop a late-onset visual impairment, motor dysfunction, and cardiac hypertrophy [176].

Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency.

Other mechanisms affecting mitochondrial translation

Abnormal import of RNA into the mitochondria: PNPT1

PNPT1 encodes the mitochondrial polynucleotide phosphorylase (PNPase), which is predominantly localized in the mitochondrial intermembrane space and is a 3′–5′ exoribonuclease which acts together with SUV3 to form the RNA degradosome within the mitochondrial matrix [177]. Two siblings with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects carried a homozygous PNPT1 missense mutation (c.1160A>G), which disrupts the trimerization of the protein. A defect of mitochondrial translation has been detected in the patient’s fibroblasts. Recently additional patients have been reported with recessive PNPT1 mutations and the clinical presentation of early onset of severe axonal neuropathy, optic atrophy, intellectual disability, auditory neuropathy, and chronic respiratory and gut disturbances [178], and severe Leigh syndrome [179]. Specific RNA processing intermediates derived from mitochondrial transcripts of the ND6 subunit of Complex I, as well as small mRNA fragments, accumulated in the subject’s myoblasts indicates that PNPase activity is essential for the correct maturation of the ND6 transcript [179].

Modification of rRNAs: MRM2

A homozygous missense mutation (c.567G>A; p.Gly189Arg) has been identified in a 7-year-old Italian boy with the clinical presentation of childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes with multiple OXPHOS deficiency in skeletal muscle. MRM2 encodes an enzyme responsible for 2′-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. Although a confirmation of the clinical phenotype in a second independent patient is still lacking, it is possible that mutations in MRM2 cause a MELAS-like phenotype, and suggests the genetic screening of MRM2 in patients with a m.3243 A > G negative MELAS-like disease [180].

Summary

  • Here we have illustrated the large variety of clinical presentations caused by defects of mitochondrial translation. More detailed understanding of the molecular mechanisms involved in mitochondrial translation may reveal some insights on the tissue specific phenotypes. Processing and modifications of mt-tRNAs may provide novel approaches to develop treatment to defects of mitochondrial translation.

  • It has been recently shown that supplementation with cysteine (l-cysteine and N-acetyl-cysteine) improves mitochondrial translation in patients with reversible mitochondrial disease (TRMU, mt-tRNAGlu) and with m.3243A>G and m.8344A>G frequent mt-tRNA mutations [181], as absence of post-transcriptional modifications at the wobble positions of mt-tRNAs for LeuUUR and Lys has been related to MELAS and myoclonic epilepsy with ragged-red fiber (MERRF), respectively.

  • As another novel approach, leucyl tRNA synthetase is able to partially rescue defects caused by mutations in non-cognate mt-tRNAs and furthermore, a C-terminal peptide alone can enter mitochondria and interact with the same spectrum of mt-tRNAs as the entire synthetase in intact cells [182,183]. These data support the possibility that a small peptide may correct the biochemical defect associated with many mt-tRNA mutations, inferring a novel therapy for these disorders.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was supported by the Wellcome Centre for Mitochondrial Research [grant number 203105/Z/16/Z] which provides support to the Wellcome Trust Investigator [grant number 109915/Z/15/Z (to R.H.)]; the Medical Research Council (U.K.) [grant number MR/N025431/1]; the European Research Council [grant number 309548]; the Wellcome Trust Pathfinder Scheme [grant number 201064/Z/16/Z]; the Newton Fund (U.K./Turkey) [grant number MR/N027302/1]; the European Union H2020—Research and Innovation Actions (Solve-RD) [grant number SC1-PM-03-2017]; the Rotary Foundation (TRF) Global Grant Scholarship [grant number GG1862130].

Author contribution

V.B., G.R. and R.H. were equally involved in data collection and drafting of the manuscript.

Abbreviations

     
  • COX

    cytochrome c oxidase

  •  
  • LBSL

    leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation

  •  
  • LSFC

    French-Canadian variant of Leigh syndrome

  •  
  • LTBL

    leukoencephalopathy with thalamus and brainstem involvement and high lactate

  •  
  • MLASA

    myopathy, lactic acidosis, and sideroblastic anemia

  •  
  • MELAS

    mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode

  •  
  • mt-ARS

    mitochondrial aminoacyl-tRNA synthetase

  •  
  • mt-mRNA

    mitochondrial mRNA

  •  
  • mt-rRNA

    mitochondrial rRNA

  •  
  • mt-tRNA

    mitochondrial tRNA

  •  
  • OXPHOS

    oxidative phosphorylation

  •  
  • PNPase

    polynucleotide phosphorylase

  •  
  • SDR

    short-chain dehydrogenase/reductase

References

References
1
Gorman
G.S.
,
Chinnery
P.F.
,
DiMauro
S.
,
Hirano
M.
,
Koga
Y.
,
McFarland
R.
et al. 
(
2016
)
Mitochondrial diseases
.
Nat. Rev. Dis. Primers
2
,
16080
[PubMed]
2
Viscomi
C.
and
Zeviani
M.
(
2017
)
MtDNA-maintenance defects: syndromes and genes
.
J. Inherit. Metab. Dis.
40
,
587
599
[PubMed]
3
Gustafsson
C.M.
,
Falkenberg
M.
and
Larsson
N.G.
(
2016
)
Maintenance and expression of mammalian mitochondrial DNA
.
Annu. Rev. Biochem.
85
,
133
160
[PubMed]
4
Pearce
S.F.
,
Rebelo-Guiomar
P.
,
D’Souza
A.R.
,
Powell
C.A.
,
Van Haute
L.
and
Minczuk
M.
(
2017
)
Regulation of mammalian mitochondrial gene expression: recent advances
.
Trends Biochem. Sci.
42
,
625
639
[PubMed]
5
Holzmann
J.
,
Frank
P.
,
Löffler
E.
,
Bennett
K.L
,
Gerner
C.
and
Rossmanith
W.
(
2008
)
RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme
.
Cell
135
,
462
474
[PubMed]
6
Rackham
O.
,
Busch
J.D.
,
Matic
S.
,
Siira
S.J.
,
Kuznetsova
I.
,
Atanassov
I.
et al. 
(
2016
)
Hierarchical RNA processing is required for mitochondrial ribosome assembly
.
Cell Rep.
16
,
1874
1890
[PubMed]
7
Rusecka
J.
,
Kaliszewska
M.
,
Bartnik
E.
and
Tońska
K.
(
2018
)
Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA
.
J. Appl. Genet.
59
,
43
57
8
Greber
B.J.
,
Bieri
P.
,
Leibundgut
M.
,
Leitner
A.
,
Aebersold
R.
,
Boehringer
D.
et al. 
(
2015
)
The complete structure of the 55S mammalian mitochondrial ribosome
.
Science
348
,
303
308
[PubMed]
9
Amunts
A.
,
Brown
A.
,
Toots
J.
,
Scheres
S.H.W.
and
Ramakrishnan
V.
(
2015
)
The structure of the human mitochondrial ribosome
.
Science
348
,
95
98
10
Minczuk
M.
and
D’Souza
A.R.
, (
2018
)
Mitochondrial transcription and translation: overview
.
Essays Biochem.
62
,
309
320
11
Boczonadi
V.
and
Horvath
R.
(
2014
)
Mitochondria: impaired mitochondrial translation in human disease
.
Int. J. Biochem. Cell. Biol.
48
,
77
84
[PubMed]
12
Stiles
A.R
,
Simon
M.T.
,
Stover
A.
,
Eftekharian
S.
,
Khanlou
N.
,
Wang
H.L.
et al. 
(
2016
)
Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion
.
Mol. Genet. Metab
119
,
91
99
[PubMed]
13
Metodiev
M.D.
,
Thompson
K.
,
Alston
C.L.
,
Morris
A.A.
,
He
L.
,
Assouline
Z.
et al. 
(
2016
)
Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies
.
Am. J. Hum. Genet.
99
,
246
[PubMed]
14
Oerum
S.
,
Roovers
M.
,
Leichsenring
M.
,
Acquaviva-Bourdain
C.
,
Beermann
F.
,
Gemperle-Britschgi
C.
et al. 
(
2017
)
Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein
.
Biochim. Biophys. Acta
1863
,
3294
3302
[PubMed]
15
Falk
M.J.
,
Gai
X.
,
Shigematsu
M.
,
Vilardo
E.
,
Takase
R.
,
McCormick
E.
et al. 
(
2016
)
A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression
.
RNA Biol.
13
,
477
485
[PubMed]
16
Haack
T.B.
,
Kopajtich
R.
,
Freisinger
P.
,
Wieland
T.
,
Rorbach
J.
,
Nicholls
T.J.
et al. 
(
2013
)
ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy
.
Am. J. Hum. Genet.
93
,
211
223
[PubMed]
17
Shinwari
Z.M.A.
,
Almesned
A.
,
Alakhfash
A.
,
Al-Rashdan
A.M.
,
Faqeih
E.
,
Al-Humaidi
Z.
et al. 
(
2017
)
The phenotype and outcome of infantile cardiomyopathy caused by a homozygous ELAC2 mutation
.
Cardiology
137
,
188
192
[PubMed]
18
Akawi
N.A.
,
Ben-Salem
S.
,
Hertecant
J.
,
John
A.
,
Pramathan
T.
,
Kizhakkedath
P.
et al. 
(
2016
)
A homozygous splicing mutation in ELAC2 suggests phenotypic variability including intellectual disability with minimal cardiac involvement
.
Orphanet J. Rare Dis.
11
,
139
[PubMed]
19
Ghezzi
D.
,
Saada
A.
,
D’Adamo
P.
,
Fernandez-Vizarra
E.
,
Gasparini
P.
,
Tiranti
V.
et al. 
(
2008
)
FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency
.
Am. J. Hum. Genet.
83
,
415
423
[PubMed]
20
Yoo
D.H.
,
Choi
Y.C.
,
Nam
D.E.
,
Choi
S.S.
,
Kim
J.W.
,
Choi
B.O.
et al. 
(
2017
)
Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome
.
Mitochondrion
35
,
54
58
[PubMed]
21
Crosby
A.H.
,
Patel
H.
,
Chioza
B.A.
,
Proukakis
C.
,
Gurtz
K.
,
Patton
M.A.
et al. 
(
2010
)
Defective mitochondrial mRNA maturation is associated with spastic ataxia
.
Am. J. Hum. Genet.
87
,
655
660
[PubMed]
22
Mootha
V.K.
,
Lepage
P.
,
Miller
K.
,
Bunkenborg
J.
,
Reich
M.
,
Hjerrild
M.
et al. 
(
2003
)
Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics
.
Proc. Natl. Acad. Sci. U.S.A.
100
,
605
610
23
Oláhová
M.
,
Hardy
S.A.
,
Hall
J.
,
Yarham
J.
,
Haack
T.B.
,
Wilson
W.C.
et al. 
(
2015
)
LRPPRC mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population
.
Brain
138
,
3503
3519
[PubMed]
24
Han
V.X.
,
Tan
T.S.
,
Wang
F.S.
and
Tay
S.K.
(
2017
)
Novel LRPPRC mutation in a boy with mild Leigh syndrome, French-Canadian type outside of Québec
.
Child Neurol. Open
4
,
[PubMed]
25
Kang
I.
,
Chu
C.T.
,
Kaufman
B.A.
The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms
.
FEBS Lett.
592
,
793
811
26
Antonicka
H.
and
Shoubridge
E.A.
(
2015
)
Mitochondrial RNA granules are centers for posttranscriptional rna processing and ribosome biogenesis
.
Cell Rep.
1247
,
pii: S2211
,
[PubMed]
27
Popow
J.
,
Alleaume
A.M.
,
Curk
T.
,
Schwarzl
T.
,
Sauer
S.
and
Hentze
M.W.
(
2015
)
FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation
.
RNA
1873
1884
[PubMed]
28
Ramanan
V.K.
,
Nho
K.
,
Shen
L.
,
Risacher
S.L.
,
Kim
S.
,
McDonald
B.C.
et al. 
(
2015
)
FASTKD2 is associated with memory and hippocampal structure in older adults
.
Mol. Psychiatry
20
,
1197
1204
[PubMed]
29
Das
S.
,
Yeung
K.T.
,
Mahajan
M.A.
and
Samuels
H.H.
(
2014
)
Fas activated serine-threonine kinase domains 2 (FASTKD2) mediates apoptosis of breast and prostate cancer cells through its novel FAST2 domain
.
BMC Cancer
14
,
852
[PubMed]
30
Wilson
W.C.
,
Hornig-Do
H.T.
,
Bruni
F.
,
Chang
J.H.
,
Jourdain
A.A.
,
Martinou
J.C.
et al. 
(
2014
)
A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression
.
Hum. Mol. Genet.
23
,
6345
6355
[PubMed]
31
Siira
S.J
,
Spåhr
H.
,
Shearwood
A.J.
,
Ruzzenente
B.
,
Larsson
N.G.
,
Rackham
O.
et al. 
(
2017
)
LRPPRC-mediated folding of the mitochondrial transcriptome
.
Nat. Commun.
8
,
1532
[PubMed]
32
Sasarman
F.
,
Brunel-Guitton
C.
,
Antonicka
H.
,
Wai
T.
and
Shoubridge
E.A.
(
2010
)
LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria
.
Mol. Biol. Cell
21
,
1315
1323
[PubMed]
33
Ruzzenente
B.
,
Metodiev
M.D.
,
Wredenberg
A.
,
Bratic
A.
,
Park
C.B.
,
Camara
Y.
et al. 
(
2012
)
LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs
.
EMBO J.
31
,
443
456
[PubMed]
34
Tian
T.
,
Ikeda
J.
,
Wang
Y.
,
Mamat
S.
,
Luo
W.
,
Aozasa
K.
et al. 
(
2012
)
Role of leucine-rich pentatricopeptide repeat motif-containing protein (LRPPRC) for anti-apoptosis and tumourigenesis in cancers
.
Eur. J. Cancer
48
,
2462
2473
[PubMed]
35
Zou
J.
,
Yue
F.
,
Li
W.
,
Song
K.
,
Jiang
X.
,
Yi
J.
et al. 
(
2014
)
Autophagy inhibitor LRPPRC suppresses mitophagy through interaction with mitophagy initiator Parkin
.
PLoS ONE
9
,
e94903
[PubMed]
36
Boczonadi
V.
,
Smith
P.M.
,
Pyle
A.
,
Gomez-Duran
A.
,
Schara
U.
,
Tulinius
M.
et al. 
(
2013
)
Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency
.
Hum. Mol. Genet.
22
,
4602
4615
[PubMed]
37
Zeharia
A.
,
Shaag
A.
,
Pappo
O.
,
Mager-Heckel
A.M.
,
Saada
A.
,
Beinat
M.
et al. 
(
2009
)
Acute infantile liver failure due to mutations in the TRMU gene
.
Am. J. Hum. Genet.
85
,
401
407
[PubMed]
38
Schara
U.
,
von Kleist-Retzow
J.C.
,
Lainka
E.
,
Gerner
P.
,
Pyle
A.
,
Smith
P.M.
et al. 
(
2011
)
Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations
.
J. Inherit. Metab. Dis.
34
,
197
201
[PubMed]
39
Uusimaa
J.
,
Jungbluth
H.
,
Fratter
C.
,
Crisponi
G.
,
Feng
L.
,
Zeviani
M.
et al. 
(
2011
)
Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease
.
J. Med. Genet.
48
,
660
668
[PubMed]
40
Gaignard
P.
,
Gonzales
E.
,
Ackermann
O.
,
Labrune
P.
,
Correia
I.
,
Therond
P
et al. 
(
2013
)
Mitochondrial infantile liver disease due to TRMU gene mutations: three new cases
.
JIMD Rep.
11
,
117
123
[PubMed]
41
Ghezzi
D
,
Baruffini
E
,
Haack
TB
,
Invernizzi
F
,
Melchionda
L
,
Dallabona
C
et al. 
(
2012
)
Mutations of the mitochondrial-tRNA modifier MTO1 cause hyper- trophic cardiomyopathy and lactic acidosis
.
Am. J. Hum. Genet.
90
,
1079
1087
[PubMed]
42
Baruffini
E.
,
Dallabona
C.
,
Invernizzi
F.
,
Yarham
J. W.
,
Melchionda
L.
,
Blakely
E. L.
et al. 
(
2013
)
MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast
.
Hum. Mutat.
34
,
1501
1509
[PubMed]
43
O’Byrne
J.J.
,
Tarailo-Graovac
M.
,
Ghani
A.
,
Champion
M.
,
Deshpande
C.
,
Dursun
A.
et al. 
(
2018
)
The genotypic and phenotypic spectrum of MTO1 deficiency
.
Mol. Genet. Metab.
123
,
28
42
[PubMed]
44
Kopajtich
R.
,
Nicholls
T.J.
,
Rorbach
J.
,
Metodiev
M.D.
,
Freisinger
P.
,
Mandel
H.
et al. 
(
2014
)
Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy
.
Am. J. Hum. Genet.
95
,
708
720
[PubMed]
45
Van Haute
L.
,
Dietmann
S.
,
Kremer
L.
,
Hussain
S.
,
Pearce
S.F.
,
Powell
C.A.
et al. 
(
2016
)
Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3
.
Nat. Commun.
7
,
12039
[PubMed]
46
Powell
C.A.
,
Kopajtich
R.
,
D’Souza
A.R.
,
Rorbach
J.
,
Kremer
L.S.
,
Husain
R.A.
et al. 
(
2015
)
TRMT5 mutations cause a defect in posttranscriptional modification of mitochondrial tRNA associated with multiple respiratory-chain deficiencies
.
Am. J. Hum. Genet.
97
,
319
328
[PubMed]
47
Tarnopolsky
M.A.
,
Brady
L.
,
Tetreault
M.
and (
2017
)
TRMT5 mutations are associated with features of complex hereditary spastic paraparesis
.
Neurology
89
,
2210
2211
[PubMed]
48
Yarham
J.W.
,
Lamichhane
T.N.
,
Pyle
A.
,
Mattijssen
S.
,
Baruffini
E.
,
Bruni
F.
et al. 
(
2014
)
Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA
.
PLoS Genet.
10
,
e1004424
[PubMed]
49
Kernohan
K.D.
,
Dyment
D.A.
,
Pupavac
M.
,
Cramer
Z.
,
McBride
A.
,
Bernard
G.
et al. 
(
2017
)
Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene
.
Hum. Mutat.
38
,
511
516
[PubMed]
50
Chakraborty
P. K.
,
Schmitz-Abe
K.
,
Kennedy
E. K.
,
Mamady
H.
,
Naas
T.
,
Durie
D.
et al. 
(
2014
)
Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD)
.
Blood
124
,
2867
2871
[PubMed]
51
DeLuca
A. P.
,
Whitmore
S. S.
,
Barnes
J.
,
Sharma
T. P.
,
Westfall
T. A.
,
Scott
C. A.
et al. 
(
2016
)
Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis
.
Hum. Mol. Genet.
25
,
44
56
52
Bykhovskaya
Y.
,
Casas
K.
,
Mengesha
E.
,
Inbal
A.
and
Fischel-Ghodsian
N.
(
2004
)
Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA)
.
Am. J. Hum. Genet.
74
,
1303
1308
[PubMed]
53
Fernandez-Vizarra
E.
,
Berardinelli
A.
,
Valente
L.
,
Tiranti
V.
and
Zeviani
M.
(
2007
)
Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA)
.
J. Med. Genet.
44
,
173
180
[PubMed]
54
Metodiev
M.D.
,
Assouline
Z.
,
Landrieu
P.
,
Chretien
D.
,
Bader-Meunier
B.
,
Guitton
C.
et al. 
(
2015
)
Unusual clinical expression and long survival of a pseudouridylate synthase (PUS1) mutation into adulthood
.
Europ. J. Hum. Genet.
23
,
880
882
55
Tucker
E.J.
,
Hershman
S.G.
,
Köhrer
C.
,
Belcher-Timme
C.A.
,
Patel
J.
,
Goldberger
O.A.
et al. 
(
2011
)
Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation
.
Cell Metab.
14
,
428
434
[PubMed]
56
Neeve
V.C.
,
Pyle
A.
,
Boczonadi
V.
,
Gomez-Duran
A.
,
Griffin
H.
,
Santibanez-Koref
M.
et al. 
(
2013
)
Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT
.
Mitochondrion
13
,
743
748
[PubMed]
57
Haack
T.B.
,
Gorza
M.
,
Danhauser
K.
,
Mayr
J.A.
,
Haberberger
B.
and
Wieland
T.
(
2014
)
Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening
.
Mol. Genet. Metab.
111
,
342
352
[PubMed]
58
Boczonadi
V
,
Bansagi
B
and
Horvath
R
(
2015
)
Reversible infantile mitochondrial diseases
.
J. Inherit. Metab. Dis
38
,
427
435
[PubMed]
59
Sturman
J.A.
,
Gaull
G.
and
Raiha
N.C.
(
1970
)
Absence of cystathionase in human fetal liver: is cystine essential?
Science
169
,
74
76
[PubMed]
60
Guan
M.X.
,
Yan
Q.
,
Li
X.
,
Bykhovskaya
Y.
,
Gallo-Teran
J.
,
Hajek
P.
et al. 
(
2006
)
Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations
.
Am. J. Hum. Genet.
79
,
291
302
[PubMed]
61
Li
R.
,
Li
X.
,
Yan
Q.
,
Mo
J. Q.
and
Guan
M.X.
(
2003
)
Identification and characterization of mouse MTO1 gene related to mitochondrial tRNA modification
.
Biochim. Biophys. Acta
1629
,
53
59
[PubMed]
62
Wedatilake
Y.
,
Niazi
R.
,
Fassone
E.
,
Powell
C.A.
,
Pearce
S.
,
Plagnol
V.
et al. 
(
2016
)
TRNT1 deficiency: clinical, biochemical and molecular genetic features
.
Orphanet J. Rare Dis.
11
,
90
[PubMed]
63
Lougaris
V.
,
Chou
J.
,
Baronio
M.
,
Gazzurelli
L.
,
Lorenzini
T.
,
Soresina
A.
et al. 
(
2017
)
Novel biallelic TRNT1 mutations resulting in sideroblastic anemia, combined B and T cell defects, hypogammaglobulinemia, recurrent infections, hypertrophic cardiomyopathy and developmental delay
.
Clin. Immunol.
188
,
20
22
64
Hull
S.
,
Malik
A.N.
,
Arno
G.
,
Mackay
D.S.
,
Plagnol
V.
and
Michaelides
M.
(
2016
)
Expanding the phenotype of TRNT1-related immunodeficiency to include childhood cataract and inner retinal dysfunction
.
JAMA Ophthalmol.
134
,
1049
1053
[PubMed]
65
Barton
C.
,
Kausar
S.
,
Kerr
D.
,
Bitetti
S.
and
Wynn
R.
(
2017
)
SIFD as a novel cause of severe fetal hydrops and neonatal anaemia with iron loading and marked extramedullary haemopoiesis
.
J. Clin. Pathol.
71
,
275
278
66
Chen
J.
and
Patton
J. R.
(
1999
)
Cloning and characterization of a mammalian pseudouridine synthase
.
RNA
5
,
409
419
[PubMed]
67
Riley
L.G.
,
Cooper
S.
,
Hickey
P.
,
Rudinger-Thirion
J.
,
McKenzie
M.
,
Compton
A.
et al. 
(
2010
)
Mutation of the mitochondrial tyrosyl-tRNA synthetase gene YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia—MLASA syndrome
.
Am. J. Hum. Genet.
87
,
52
59
[PubMed]
68
Zeharia
A.
,
Fischel-Ghodsian
N.
,
Casas
K.
,
Bykhocskaya
Y.
,
Tamari
H.
,
Lev
D.
et al. 
(
2005
)
Mitochondrial myopathy, sideroblastic anemia, and lactic acidosis: an autosomal recessive syndrome in Persian Jews caused by a mutation in the PUS1 gene
.
J. Child Neurol.
20
,
449
452
[PubMed]
69
Cao
M.
,
Donà
M.
,
Valentino
M.L.
,
Valentino
L.
,
Semplicini
C.
,
Maresca
A.
et al. 
(
2016
)
Clinical and molecular study in a long-surviving patient with MLASA syndrome due to novel PUS1 mutations
.
Neurogenetics
17
,
65
70
[PubMed]
70
La Piana
R.
,
Weraarpachai
W.
,
Ospina
L.H.
,
Tetreault
M.
,
Majewski
J.
and (
2017
)
Identification and functional characterization of a novel MTFMT mutation associated with selective vulnerability of the visual pathway and a mild neurological phenotype
.
Neurogenetics
18
,
97
103
[PubMed]
71
Boczonadi
V.
,
Jennings
M.J.
and
Horvath
R.
(
2017
)
The role of tRNA synthetases in neurological and neuromuscular disorders
.
FEBS Lett.
,
592
,
703
717
72
Sissler
M.
,
González-Serrano
L.E.
and
Westhof
E.
(
2017
)
Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease
.
Trends Mol. Med.
23
,
693
708
[PubMed]
73
Oprescu
S.N.
,
Griffin
L.B.
,
Beg
A.A.
and
Antonellis
A.
(
2017
)
Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations
.
Methods
113
,
139
151
[PubMed]
74
Meyer-Schuman
R.
and
Antonellis
A.
(
2017
)
Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease
.
Hum. Mol. Genet.
26
,
R114
R127
[PubMed]
75
Rajendran
V.
,
Kalita
P.
,
Shukla
H.
,
Kumar
A.
and
Tripathi
T.
(
2018
)
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery
.
Int. J. Biol. Macromol.
111
,
400
414
[PubMed]
76
Scheper
G.C.
,
van der Klok
T.
,
van Andel
R.J.
,
van Berkel
C.G.
,
Sissler
M.
,
Smet
J.
et al. 
(
2007
)
Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation
.
Nat. Genet.
39
,
534
539
[PubMed]
77
Isohanni
P.
,
Linnankivi
T.
,
Buzkova
J.
,
Lönnqvist
T.
,
Pihko
H.
,
Valanne
L.
et al. 
(
2010
)
DARS2 mutations in mitochondrial leucoencephalopathy and multiple sclerosis
.
J. Med. Genet.
47
,
66
70
[PubMed]
78
Miyake
N.
,
Yamashita
S.
,
Kurosawa
K.
,
Miyatake
S.
,
Tsurusaki
Y.
,
Doi
H.
et al. 
(
2011
)
A novel homozygous mutation of DARS2 may cause a severe LBSL variant
.
Clin. Genet.
80
,
293
296
[PubMed]
79
van Berge
L.
,
Hamilton
E.M.
,
Linnankivi
T.
,
Uziel
G.
,
Steenweg
M.E.
,
Isohanni
P.
et al. 
(
2014
)
Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation: clinical and genetic characterization and target for therapy
.
Brain
137
,
1019
1029
[PubMed]
80
Shimojima
K.
,
Higashiguchi
T.
,
Kishimoto
K.
,
Miyatake
S.
,
Miyake
N.
,
Takanashi
J.I.
et al. 
(
2017
)
A novel DARS2 mutation in a Japanese patient with leukoencephalopathy with brainstem and spinal cord involvement but no lactate elevation
.
Hum. Genome Var.
4
,
17051
[PubMed]
81
Pinto
W.B.
and
de Souza
P.V.
(
2014
)
DARS2 gene clinical spectrum: new ideas regarding an underdiagnosed leukoencephalopathy
.
Brain
137
,
e289
[PubMed]
82
Synofzik
M.
,
Schicks
J.
,
Lindig
T.
,
Biskup
S.
,
Schmidt
T.
,
Hansel
J.
et al. 
(
2011
)
Acetazolamide-responsive exercise-induced episodic ataxia associated with a novel homozygous DARS2 mutation
.
J. Med. Genet.
48
,
713
715
[PubMed]
83
Edvardson
S.
,
Shaag
A.
,
Kolesnikova
O.
,
Gomori
J.M.
,
Tarassov
I.
,
Einbinder
T.
et al. 
(
2007
)
Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia
.
Am. J. Hum. Genet.
81
,
857
862
[PubMed]
84
Rankin
J.
,
Brown
R.
,
Dobyns
W.B.
,
Harington
J.
,
Patel
J.
,
Quinn
M.
et al. 
(
2010
)
Pontocerebellar hypoplasia type 6: A British case with PEHO-like features
.
Am. J. Med. Genet.
152
,
2079
2084
85
Cassandrini
D.
,
Cilio
M.R.
,
Bianchi
M.
,
Doimo
M.
,
Balestri
M.
,
Tessa
A.
et al. 
(
2013
)
Pontocerebellar hypoplasia type 6 caused by mutations in RARS2: definition of the clinical spectrum and molecular findings in five patients
.
J. Inherit. Metab. Dis.
36
,
43
53
[PubMed]
86
Li
Z.
,
Schonberg
R.
,
Guidugli
L.
,
Johnson
A.K.
,
Arnovitz
S.
,
Yang
S.
et al. 
(
2015
)
A novel mutation in the promoter of RARS2 causes pontocerebellar hypoplasia in two siblings
.
J. Hum. Genet.
60
,
363
369
[PubMed]
87
Lühl
S.
,
Bode
H.
,
Schlötzer
W.
,
Bartsakoulia
M
,
Horvath
R.
,
Abicht
A.
et al. 
(
2016
)
Novel homozygous RARS2 mutation in two siblings without pontocerebellar hypoplasia - further expansion of the phenotypic spectrum
.
Orphanet J. Rare Dis.
11
,
140
[PubMed]
88
Steenweg
M.E.
,
Ghezzi
D.
,
Haack
T.
,
Abbink
T.E.
,
Martinelli
D.
,
van Berkel
C.G.
et al. 
(
2012
)
Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations
.
Brain
135
,
1387
1394
[PubMed]
89
Talim
B.
,
Pyle
A.
,
Griffin
H.
,
Topaloglu
H.
,
Tokatli
A.
,
Keogh
M.J.
et al. 
(
2013
)
Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation
.
Brain
136
,
e228
[PubMed]
90
Kevelam
S.H.
,
Klouwer
F.C.
,
Fock
J.M.
,
Salomons
G.S.
,
Bugiani
M.
and
van der Knaap
M.S.
(
2016
)
Absent thalami caused by a homozygous EARS2 mutation: expanding disease spectrum of LTBL
.
Neuropediatrics
47
,
64
67
[PubMed]
91
Güngör
O.
,
Özkaya
A.K.
,
Şahin
Y.
,
Güngör
G.
,
Dilber
C.
and
Aydın
K.A.
(
2016
)
compound heterozygous EARS2 mutation associated with mild leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL)
.
Brain Dev.
38
,
857
861
[PubMed]
92
Şahin
S.
,
Cansu
A.
,
Kalay
E.
,
Dinçer
T.
,
Kul
S.
,
Çakır
İ.M.
et al. 
(
2016
)
Leukoencephalopathy with thalamus and brainstem involvement and high lactate caused by novel mutations in the EARS2 gene in two siblings
.
J. Neurol. Sci.
365
,
54
58
[PubMed]
93
Bayat
V.
,
Thiffault
I.
,
Jaiswal
M.
,
Tétreault
M.
,
Donti
T.
,
Sasarman
F.
et al. 
(
2012
)
Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenera- tive phenotype in flies and a recessive ataxia (ARSAL) in humans
.
PLoS Biol.
10
,
e1001288
[PubMed]
94
Webb
B.D.
,
Wheeler
P.G.
,
Hagen
J.J.
,
Cohen
N.
,
Linderman
M.D.
,
Diaz
G.A.
et al. 
(
2015
)
Novel, compound heterozygous, single-nucleotide variants in MARS2 associated with developmental delay, poor growth, and sensorineural hearing loss
.
Hum. Mutat.
36
,
587
592
[PubMed]
95
Elo
J.M.
,
Yadavalli
S.S.
,
Euro
L.
,
Isohanni
P.
,
Götz
A.
,
Carroll
C.J.
et al. 
(
2012
)
Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy
.
Hum. Mol. Genet.
21
,
4521
4529
[PubMed]
96
Shamseldin
H.E.
,
Alshammari
M.
,
Al-Sheddi
T.
,
Salih
M.A.
,
Alkhalidi
H.
,
Kentab
A.
et al. 
(
2012
)
Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes
.
J. Med. Genet.
49
,
234
241
[PubMed]
97
Yang
Y.
,
Liu
W.
,
Fang
Z.
,
Shi
J.
,
Che
F.
,
He
C.
et al. 
et al. ,
2016
A newly identified missense mutation in FARS2 causes autosomal-recessive spastic paraplegia
.
Hum. Mutat.
37
,
165
169
[PubMed]
98
Götz
A.
,
Tyynismaa
H.
,
Euro
L.
,
Ellonen
P.
,
Hyötyläinen
T.
,
Ojala
T.
et al. 
(
2011
)
Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy
.
Am. J. Hum. Genet.
88
,
635
642
[PubMed]
99
Taylor
R.W.
,
Pyle
A.
,
Griffin
H.
,
Blakely
E.L.
,
Duff
J.
,
He
L.
et al. 
(
2014
)
Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies
.
JAMA
312
,
68
77
[PubMed]
100
Dallabona
C.
,
Diodato
D.
,
Kevelam
S.H.
,
Haack
T.B.
,
Wong
L.J.
,
Salomons
G.S.
et al. 
(
2014
)
Novel (ovario) leukodystrophy related to AARS2 mutations
.
Neurology
82
,
2063
2071
[PubMed]
101
Lynch
D.S.
,
Zhang
W.J.
,
Lakshmanan
R.
,
Kinsella
J.A.
,
Uzun
G.A.
,
Karbay
M.
et al. 
(
2016
)
Analysis of mutations in AARS2 in a series of CSF1R-negative patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia
.
JAMA Neurol.
73
,
1433
1439
[PubMed]
102
Szpisjak
L.
,
Zsindely
N.
,
Engelhardt
J.I.
,
Vecsei
L.
,
Kovacs
G.G.
and
Klivenyi
P.
(
2017
)
Novel AARS2 gene mutation producing leukodystrophy: a case report
.
J. Hum. Genet.
62
,
329
333
[PubMed]
103
Sasarman
F.
,
Nishimura
T.
,
Thiffault
I.
and
Shoubridge
E.A.
(
2012
)
A novel mutation in YARS2 causes myopathy with lactic acidosis and sideroblastic anemia
.
Hum. Mutat.
33
,
1201
1206
[PubMed]
104
Shahni
R.
,
Wedatilake
Y.
,
Cleary
M.A.
,
Lindley
K.J.
,
Sibson
K.R.
and
Rahman
S.
(
2013
)
A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations
.
Am. J. Med. Genet.
161
,
2334
2338
105
Riley
L.G.
,
Menezes
M.J.
,
Rudinger-Thirion
J.
,
Duff
R.
,
de Lonlay
P.
,
Rotig
A.
et al. 
(
2013
)
Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia
.
Orphanet J. Rare Dis.
8
,
193
[PubMed]
106
Nakajima
J.
,
Eminoglu
T.F.
,
Vatansever
G.
,
Nakashima
M.
,
Tsurusaki
Y.
,
Saitsu
H.
et al. 
(
2014
)
A novel homozygous YARS2 mutation causes severe myopathy, lactic acidosis, and sideroblastic anemia 2
.
J. Hum. Genet.
59
,
229
232
[PubMed]
107
Belostotsky
R.
,
Ben-Shalom
E.
,
Rinat
C.
,
Becker-Cohen
R.
,
Feinstein
S.
,
Zeligson
S.
et al. 
(
2011
)
Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome
.
Am. J. Hum. Genet.
88
,
193
200
[PubMed]
108
Linnankivi
T.
,
Neupane
N.
,
Richter
U.
,
Isohanni
P.
and
Tyynismaa
H.
(
2016
)
Splicing defect in mitochondrial Seryl-tRNA synthetase gene causes progressive spastic paresis instead of hupra syndrome
.
Hum. Mutat.
37
,
884
888
[PubMed]
109
Pierce
S.B.
,
Chisholm
K.M.
,
Lynch
E.D.
,
Lee
M.K.
,
Walsh
T.
,
Opitz
J.M.
et al. 
(
2011
)
Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome
.
Proc. Natl. Acad. Sci. U.S.A.
108
,
6543
6548
110
Pierce
S.B.
,
Gersak
K.
,
Michaelson-Cohen
R.
,
Walsh
T.
,
Lee
M.K.
,
Malach
D.
et al. 
(
2013
)
Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome
.
Am. J. Hum. Genet. A
92
,
614
620
[PubMed]
111
Soldà
G.
,
Caccia
S.
,
Robusto
M.
,
Chiereghin
C.
,
Castorina
P.
,
Ambrosetti
U.
et al. 
(
2016
)
First independent replication of the involvement of LARS2 in Perrault syndrome by whole-exome sequencing of an Italian family
.
J. Hum. Genet.
61
,
295
300
[PubMed]
112
Demain
L.A.
,
Urquhart
J.E.
,
O’Sullivan
J.
,
Williams
S.G.
,
Bhaskar
S.S.
and
Jenkinson
E.M.
(
2017
)
Expanding the genotypic spectrum of Perrault syndrome
.
Clin. Genet.
91
,
302
312
[PubMed]
113
Riley
L.G.
,
Rudinger-Thirion
J.
,
Schmitz-Abe
K.
,
Thorburn
D.R.
,
Davis
R.L.
,
Teo
J.
et al. 
(
2016
)
LARS2 variants associated with hydrops, lactic acidosis, sideroblastic anemia, and multisystem failure
.
JIMD Rep.
28
,
49
57
[PubMed]
114
Diodato
D.
,
Melchionda
L.
,
Haack
T.B.
,
Dallabona
C.
,
Baruffini
E.
,
Donnini
C.
et al. 
(
2014
)
VARS2 and TARS2 mutations in patients with mitochondrial encephalomyopathies
.
Hum. Mutat.
35
,
983
989
[PubMed]
115
Sofou
K.
,
Kollberg
G.
,
Holmstrom
M.
,
Davila
M.
,
Darin
N.
,
Gustafsson
C. M.
et al. 
(
2015
)
Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase in patients with Alpers syndrome
.
Mol. Genet. Genomic Med.
3
,
59
68
116
Vanlander
A.V.
,
Menten
B.
,
Smet
J.
,
De Meirleir
L.
,
Sante
T.
,
De Paepe
B.
et al. 
(
2015
)
Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2)
.
Hum. Mutat.
36
,
222
231
[PubMed]
117
Simon
M.
,
Richard
E.M.
,
Wang
X.
,
Shahzad
M.
,
Huang
V.H.
,
Qaiser
T.A.
et al. 
(
2015
)
Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome
.
PLoS Genet.
11
,
e1005097
[PubMed]
118
Mizuguchi
T.
,
Nakashima
M.
,
Kato
M.
,
Yamada
K.
,
Okanishi
T.
,
Ekhilevitch
N.
et al. 
(
2017
)
PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder
.
J. Hum. Genet.
62
,
525
529
[PubMed]
119
Coughlin
C.R.
,
Scharer
G.H.
,
Friederich
M.W.
,
Yu
H.C.
,
Geiger
E.A.
,
Creadon-Swindell
G.
et al. 
(
2015
)
Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder
.
J. Med. Genet.
52
,
532
540
[PubMed]
120
Schwartzentruber
J.
,
Buhas
D.
,
Majewski
J.
,
Sasarman
F.
,
Papillon-Cavanagh
S.
,
Thiffault
I.
et al. 
(
2014
)
Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome
.
Hum. Mutat.
35
,
1285
1289
[PubMed]
121
Moosa
S.
,
Haagerup
A.
,
Gregersen
P.A.
,
Petersen
K.K.
,
Altmüller
J.
,
Thiele
H.
et al. 
(
2017
)
Confirmation of CAGSSS syndrome as a distinct entity in a Danish patient with a novel homozygous mutation in IARS2
.
Am. J. Med. Genet. A.
173
,
1102
1108
[PubMed]
122
Baertling
F.
,
Alhaddad
B.
,
Seibt
A.
,
Budaeus
S.
,
Meitinger
T.
,
Strom
T.M.
et al. 
(
2017
)
Neonatal encephalocardiomyopathy caused by mutations in VARS2
.
Metab. Brain Dis.
32
,
267
270
[PubMed]
123
Alsemari
A.
,
Al-Younes
B.
,
Goljan
E.
,
Jaroudi
D.
,
BinHumaid
F.
,
Meyer
B.F.
et al. 
(
2017
)
Recessive VARS2 mutation underlies a novel syndrome with epilepsy, mental retardation, short stature, growth hormone deficiency, and hypogonadism
.
Hum. Genomics
11
,
28
[PubMed]
124
Musante
L.
,
Püttmann
L.
,
Kahrizi
K.
,
Garshasbi
M.
,
Hu
H.
,
Stehr
H.
et al. 
(
2017
)
Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability
.
Hum. Mutat.
38
,
621
636
[PubMed]
125
Wortmann
S.B.
,
Timal
S.
,
Venselaar
H.
,
Wintjes
L.T.
,
Kopajtich
R.
,
Feichtinger
R.G.
et al. 
(
2017
)
Biallelic variants in WARS2 encoding mitochondrial tryptophanyl-tRNA synthase in six individuals with mitochondrial encephalopathy
.
Hum. Mutat.
38
,
1786
1795
[PubMed]
126
Theisen
B.E.
,
Rumyantseva
A.
,
Cohen
J.S.
,
Alcaraz
W.A.
,
Shinde
D.N.
,
Tang
S.
et al. 
(
2017
)
Deficiency of WARS2, encoding mitochondrial tryptophanyl tRNA synthetase, causes severe infantile onset leukoencephalopathy
.
Am. J. Med. Genet. A
173
,
2505
2510
[PubMed]
127
Burke
E.A.
,
Frucht
S.J.
,
Thompson
K.
,
Wolfe
L.A.
,
Yokoyama
T.
,
Bertoni
M.
et al. 
(
2017
)
Biallelic mutations in mitochondrial tryptophanyl-tRNA synthetase cause levodopa-rresponsive infantile-onset parkinsonism
.
Clin. Genet.
93
,
712
718
128
Sofou
K.
,
Kollberg
G.
,
Holmstrom
M.
,
Davila
M.
,
Darin
N.
,
Gustafsson
C. M.
et al. 
(
2015
)
Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome
.
Mol. Genet. Genomic Med.
3
,
59
68
129
Antonellis
A.
,
Ellsworth
R.E.
,
Sambuughin
N.
,
Puls
I.
,
Abel
A.
,
Lee-Lin
S.Q.
et al. 
(
2003
)
Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V
.
Am. J. Hum. Genet.
72
,
1293
1299
[PubMed]
130
Oprescu
S.N.
,
Chepa-Lotrea
X.
,
Takase
R.
,
Golas
G.
,
Markello
T.C.
,
Adams
D.R.
et al. 
(
2017
)
Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation
.
Hum. Mutat.
38
,
1412
1420
[PubMed]
131
Nafisinia
M.
,
Riley
L.G.
,
Gold
W.A.
,
Bhattacharya
K.
,
Broderick
C.R.
,
Thorburn
D.R.
et al. 
(
2017
)
Compound heterozygous mutations in glycyl-tRNA synthetase (GARS) cause mitochondrial respiratory chain dysfunction
.
PLoS ONE
12
,
e0178125
[PubMed]
132
McMillan
H.J.
,
Schwartzentruber
J.
,
Smith
A.
,
Lee
S.
,
Chakraborty
P.
,
Bulman
D.E.
et al. 
(
2014
)
Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease
.
BMC Med. Genet.
15
,
36
[PubMed]
133
Kohda
M.
,
Tokuzawa
Y.
,
Kishita
Y.
,
Nyuzuki
H.
,
Moriyama
Y.
,
Mizuno
Y.
et al. 
(
2016
)
A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies
.
PLoS Genet.
12
,
e1005679
[PubMed]
134
Verrigni
D.
,
Diodato
D.
,
Di Nottia
M.
,
Torraco
A.
,
Bellacchio
E.
,
Rizza
T.
et al. 
(
2017
)
Novel mutations in KARS cause hypertrophic cardiomyopathy and combined mitochondrial respiratory chain defect
.
Clin. Genet.
91
,
918
923
[PubMed]
135
McMillan
H.J.
,
Humphreys
P.
,
Smith
A.
,
Schwartzentruber
J.
,
Chakraborty
P.
,
Bulman
D.E.
et al. 
(
2015
)
Congenital visual impairment and progressive microcephaly due to lysyl-transfer ribonucleic acid (RNA) synthetase (KARS) mutations: the expanding phenotype of aminoacyl-transfer RNA synthetase mutations in human disease
.
J. Child Neurol.
30
,
1037
1043
[PubMed]
136
Santos-Cortez
R.L.
,
Lee
K.
,
Azeem
Z.
,
Antonellis
P.J.
,
Pollock
L.M.
,
Khan
S.
et al. 
(
2013
)
Mutations in KARS, encoding lysyl-tRNA synthetase, cause autosomal-recessive nonsyndromic hearing impairment DFNB89
.
Am. J. Hum. Genet.
93
,
132
140
[PubMed]
137
McLaughlin
H.M.
,
Sakaguchi
R.
,
Liu
C.
,
Igarashi
T.
,
Pehlivan
D.
,
Chu
K.
et al. 
(
2010
)
Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy
.
Am. J. Hum. Genet.
87
,
560
566
[PubMed]
138
Bonnefond
L.
,
Fender
A.
,
Rudinger-Thirion
J.
,
Giegé
R.
,
Florentz
C.
and
Sissler
M
,
Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS
.
Biochemistry
44
,
4805
4816
[PubMed]
139
Carapito
C.
,
Kuhn
L.
,
Karim
L.
,
Rompais
M.
,
Rabilloud
T.
,
Schwenzer
H.
et al. 
(
2017
)
Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases
.
Methods
113
,
111
119
[PubMed]
140
Ognjenović
J.
and
Simonović
M.
(
2017
)
Human aminoacyl-tRNA synthetases in diseases of the nervous system
.
RNA Biol.
23
,
1
12
141
Steenweg
M.E.
,
Ghezzi
D.
,
Haack
T.
,
Abbink
T.E.
,
Martinelli
D.
,
van Berkel
C.G.
et al. 
(
2012
)
Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations
.
Brain
135
,
1387
1394
[PubMed]
142
Euro
L.
,
Konovalova
S.
,
Asin-Cayuela
J.
,
Tulinius
M.
,
Griffin
H.
,
Horvath
R.
et al. 
(
2015
)
Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation
.
Front. Genet.
6
,
21
[PubMed]
143
Kohda
M.
,
Tokuzawa
Y.
,
Kishita
Y.
,
Nyuzuki
H.
,
Moriyama
Y.
,
Mizuno
Y.
et al. 
(
2016
)
A Comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies
.
PLoS Genet.
12
,
e1005679
[PubMed]
144
Kamps
R.
,
Szklarczyk
R.
,
Theunissen
T.E.
,
Hellebrekers
D.M.E.I.
,
Sallevelt
S.C.E.H.
,
Boesten
I.B.
et al. 
(
2018
)
Genetic defects in mtDNA-encoded protein translation cause pediatric, mitochondrial cardiomyopathy with early-onset brain disease
.
Eur. J. Hum. Genet.
[PubMed]
145
Newman
W.G.
,
Friedman
T.B.
and
Conway
G.S.
(
2014
)
Perrault syndrome
. In
SourceGeneReviews®
(
Adam
M.P.
,
Ardinger
H.H.
,
Pagon
R.A.
,
Wallace
S.E.
,
Bean
L.J.H.
,
Stephens
K.
and
Amemiya
A.
, eds), pp.
1993
2018
,
University of Washington, Seattle
,
Seattle (WA)
146
Galmiche
L.
,
Serre
V.
,
Beinat
M.
,
Assouline
Z.
,
Lebre
A.S.
,
Chretien
D.
et al. 
(
2011
)
Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy
.
Hum. Mutat.
32
,
1225
1231
[PubMed]
147
Miller
C.
,
Saada
A.
,
Shaul
N.
,
Shabtai
N.
,
Ben-Shalom
E.
,
Shaag
A.
et al. 
(
2004
)
Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation
.
Ann. Neurol.
56
,
734
738
[PubMed]
148
Saada
A.
,
Shaag
A.
,
Arnon
S.
,
Dolfin
T.
,
Miller
C.
,
Fuchs-Telem
D.
et al. 
(
2007
)
Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation
.
J. Med. Genet.
44
,
784
786
[PubMed]
149
Smits
P.
,
Saada
A.
,
Wortmann
S.B.
,
Heister
A.J.
,
Brink
M.
,
Pfundt
R.
et al. 
(
2011
)
Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy
.
Eur. J. Hum. Genet.
19
,
39
399
150
Carroll
C.J.
,
Isohanni
P.
,
Pöyhönen
R.
,
Euro
L.
,
Richter
U.
,
Brilhante
V.
et al. 
(
2013
)
Whole- exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy
.
J. Med. Genet.
50
,
151
159
[PubMed]
151
Distelmaier
F.
,
Haack
T.B.
,
Catarino
C.B.
,
Gallenmüller
C.
,
Rodenburg
R.J.
,
Strom
T.M.
et al. 
(
2015
)
MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy
.
Neurogenetics
16
,
319
323
[PubMed]
152
Serre
V.
,
Rozanska
A.
,
Beinat
M.
,
Chretien
D.
,
Boddaert
N.
,
Munnich
A.
et al. 
(
2013
)
Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neuro- logical deterioration and mitochondrial translation deficiency
.
Biochim. Biophys. Acta
1832
,
1304
1312
[PubMed]
153
Richman
T.R.
,
Ermer
J.A.
,
Davies
S.M.
,
Perks
K.L.
,
Viola
H.M.
,
Shearwood
A.M.
et al. 
(
2015
)
Mutation in MRPS34 compromises protein synthesis and causes mitochondrial dysfunction
.
PLoS Genet.
11
,
e1005089
[PubMed]
154
Lake
N.J.
,
Webb
B.D.
,
Stroud
D.A.
,
Richman
T.R.
,
Ruzzenente
B.
,
Compton
A.G.
et al. 
(
2017
)
Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and Leigh syndrome
.
Am. J. Hum. Genet.
101
,
239
254
[PubMed]
155
Janer
A.
,
Antonicka
H.
,
Lalonde
E.
,
Nishimura
T.
,
Sasarman
F.
,
Brown
G.K.
et al. 
(
2012
)
An RMND1 Mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect
.
Am. J. Hum. Genet.
91
,
737
743
[PubMed]
156
Garcia-Diaz
B.
,
Barros
M.H.
,
Sanna-Cherchi
S.
,
Emmanuele
V.
,
Akman
H.O.
,
Ferreiro- Barros
C.C.
et al. 
(
2012
)
Infantile encephaloneuromyopathy and defective mitochondrial translation are due to a homozygous RMND1 mutation
.
Am. J. Hum. Genet.
91
,
729
736
[PubMed]
157
Ng
Y.S.
,
Alston
C.L.
,
Diodato
D.
,
Morris
A.A.
,
Ulrick
N.
,
Kmoch
S.
et al. 
(
2016
)
The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease
.
J. Med. Genet.
158
Coenen
M.J.H.
,
Antonicka
H.
,
Ugalde
C.
,
Sasarman
F.
,
Rossi
R.
,
Angelien Heister
J.G.A.M.
et al. 
(
2004
)
Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency
.
N. Engl. J. Med.
351
,
2080
2086
159
Ravn
K.
,
Neland
M.
,
Wibrand
F.
,
Duno
M.
and
Ostergaard
E.
(
2016
)
Hearing impairment and renal failure associated with RMND1 mutations
.
Am. J. Med. Genet. A.
170A
,
142
147
[PubMed]
160
Smits
P.
,
Antonicka
H.
,
van Hasselt
P.M.
,
Weraarpachai
W.
,
Haller
W.
,
Schreurs
M.
et al. 
(
2011
)
Mutation in subdomain G’ of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle
.
Europ. J. Hum. Genet.
19
,
275
279
161
Kohda
M.
,
Tokuzawa
Y.
,
Kishita
Y.
,
Nyuzuki
H.
,
Moriyama
Y.
,
Mizuno
Y.
et al. 
(
2016
)
A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies
.
PLoS Genet.
12
,
e1005679
[PubMed]
162
Smeitink
J.A.
,
Elpeleg
O.
,
Antonicka
H.
,
Diepstra
H.
,
Saada
A.
,
Smits
P.
et al. 
(
2006
)
Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs
.
Am. J. Hum. Genet.
79
,
869
877
[PubMed]
163
Shamseldin
H.E.
,
Alshammari
M.
,
Al-Sheddi
T.
,
Salih
M.A.
,
Alkhalidi
H.
,
Kentab
A.
et al. 
(
2012
)
Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes
.
J. Med. Genet.
49
,
234
241
[PubMed]
164
Ahola
S.
,
Isohanni
P.
,
Euro
L.
,
Brilhante
V.
,
Palotie
A.
,
Pihko
H.
et al. 
(
2014
)
Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy
.
Neurology
83
,
743
751
[PubMed]
165
Janer
A.
,
van Karnebeek
C.D.
,
Sasarman
F.
,
Antonicka
H.
,
Ghamdi
M.
,
Shyr
C.
et al. 
(
2015
)
RMND1 deficiency associated with neonatal lactic acidosis, infantile onset renal failure, deafness, and multiorgan involvement
.
Eur. J. Hum. Genet.
23
,
1301
1307
[PubMed]
166
Gupta
A.
,
Colmenero
I.
,
Ragge
N.K.
,
Blakely
E.L.
,
He
L.
,
McFarland
R.
et al. 
(
2016
)
Compound heterozygous RMND1 gene variants associated with chronic kidney disease, dilated cardiomyopathy and neurological involvement: a case report
.
BMC Res. Notes
9
,
325
[PubMed]
167
Vinu
N.
,
Puri
R.D.
,
Anand
K.
and
Verma
I.C.
(
2018
)
Expanding the phenotype of the founder south asian mutation in the nuclear encoding mitochondrial RMND1 gene
.
Indian J. Pediatr.
85
,
87
92
[PubMed]
168
Shimazaki
H.
,
Takiyama
Y.
,
Ishiura
H.
,
Sakai
C.
,
Matsushima
Y.
,
Hatakeyama
H.
et al. 
(
2012
)
A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55)
.
J. Med. Genet.
49
,
777
784
[PubMed]
169
Tucci
A.
,
Liu
Y.T.
,
Preza
E.
,
Pitceathly
R.D.
,
Chalasani
A.
,
Plagnol
V.
et al. 
(
2014
)
Novel C12orf65 mutations in patients with axonal neuropathy and optic atrophy
.
J. Neurol. Neurosurg. Psychiatry
85
,
486
492
[PubMed]
170
Pyle
A.
,
Ramesh
V.
,
Bartsakoulia
M.
,
Boczonadi
V.
,
Gomez-Duran
A.
,
Herczegfalvi
A.
et al. 
(
2014
)
Behr’s syndrome is typically associated with disturbed mitochondrial translation and mutations in the C12orf65 Gene
.
J. Neuromuscul. Dis.
1
,
55
63
[PubMed]
171
Makrythanasis
P.
,
Nelis
M.
,
Santoni
F. A.
,
Guipponi
M.
,
Vannier
A.
,
Bena
F.
et al. 
(
2014
)
Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families
.
Hum. Mutat.
35
,
1203
1210
[PubMed]
172
Antonicka
H.
,
Ostergaard
E.
,
Sasarman
F.
,
Weraarpachai
W.
,
Wibrand
F.
,
Pedersen
A.M.
et al. 
(
2010
)
Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect
.
Am. J. Hum. Genet.
87
,
115
122
[PubMed]
173
Spiegel
R.
,
Mandel
H.
,
Saada
A.
,
Lerer
I.
,
Burger
A.
,
Shaag
A.
et al. 
(
2014
)
Delineation of C12orf65-related phenotypes: a genotype-phenotype relationship
.
Eur. J. Hum. Genet.
22
,
1019
1025
[PubMed]
174
Weraarpachai
W.
,
Antonicka
H.
,
Sasarman
F.
,
Seeger
J.
,
Schrank
B.
,
Kolesar
J.E.
et al. 
(
2009
)
Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome
.
Nat. Genet.
41
,
833
837
[PubMed]
175
Seeger
J.
,
Schrank
B.
,
Pyle
A.
,
Stucka
R.
,
Lörcher
U.
,
Müller-Ziermann
S.
et al. 
(
2010
)
Clinical and neuropathological findings in patients with TACO1 mutations
.
Neuromuscul. Disord.
20
,
720
724
[PubMed]
176
Richman
T.R.
,
Spåhr
H.
,
Ermer
J.A.
,
Davies
S.M.
,
Viola
H.M.
and
Bates
K.A.
(
2016
)
nLoss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice
.
Nat. Commun.
7
,
11884
[PubMed]
177
Vedrenne
V.
,
Gowher
A.
,
De Lonlay
P.
,
Nitschke
P.
,
Serre
V.
and
Boddaert
N.
(
2012
)
Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency
.
Am. J. Hum. Genet.
91
,
912
918
[PubMed]
178
Alodaib
A.
,
Sobreira
N.
,
Gold
W.A.
,
Riley
L.G.
,
Van Bergen
N.J.
,
Wilson
M.J.
et al. 
(
2016
)
Whole-exome sequencing identifies novel variants in PNPT1 causing oxidative phosphorylation defects and severe multisystem disease
.
Eur. J. Hum. Genet.
25
,
79
84
[PubMed]
179
Matilainen
S.
,
Carroll
C.J.
,
Richter
U.
,
Euro
L.
,
Pohjanpelto
M.
et al. 
(
2017
)
Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome
.
Hum. Mol. Genet.
26
,
3352
3361
[PubMed]
180
Garone
C.
,
D’Souza
A.R.
,
Dallabona
C.
,
Lodi
T.
,
Rebelo-Guiomar
P.
,
Rorbach
J.
et al. 
(
2017
)
Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome
.
Hum. Mol. Genet.
26
,
4257
4266
[PubMed]
181
Bartsakoulia
M.
,
Mϋller
J.S.
,
Gomez-Duran
A.
,
Yu-Wai-Man
P.
,
Boczonadi
V.
and
Horvath
R.
(
2016
)
Cysteine supplementation may be beneficial in a subgroup of mitochondrial translation deficiencies
.
J. Neuromuscul. Dis.
3
,
363
379
[PubMed]
182
Perli
E.
,
Giordano
C.
,
Pisano
A.
,
Montanari
A.
,
Campese
A.F.
,
Reyes
A.
et al. 
(
2014
)
The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells
.
EMBO Mol. Med.
6
,
169
182
[PubMed]
183
Hornig-Do
H.T.
,
Montanari
A.
,
Rozanska
A.
,
Tuppen
H.A.
,
Almalki
A.A.
,
Abg-Kamaludin
D.P.
et al. 
(
2014
)
Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations
.
EMBO Mol. Med.
6
,
183
193
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).