Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.

Approx. 75% of the human genome is transcribed into RNA, while only 3% is transcribed into protein-coding mRNAs [1]. According to the length, shape and location, non-coding RNAs (ncRNAs) have been divided into different classes. Among them, microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA) are the four major ncRNA types with distinct functions in cancers. miRNAs are a kind of small RNA with approx. 22 nucleotides (nt) in length. miRNAs bind to the complementary sequence in targeted mRNA and cause RNA-induced silencing complex (RISC) to degrade targeted mRNA (Figure 1) [2]. piRNA was first identified in Drosophila with 24–30 nt in length. It mainly exists in germline cells and binds to PIWI family proteins to participate in epigenetic regulation of chromatin [3]. LncRNAs and circRNAs are more than 200 nt long, but lncRNAs are linear, while circRNAs are ringlike. Both lncRNAs and circRNAs can be transcribed from exon, intron, intergenic region or 5′/3′-untranslational regions and fold into complicated second structures, which facilitate their interactions with DNA, RNA and proteins (Figures 2 and 3) [4]. LncRNAs and circRNAs regulate gene expression through multiple mechanisms. They can play as miRNA decoy to prevent the targeted mRNA degradation. They can modulate transcription factors to bind to promoters and thus regulate targeted gene expression [5]. They can also work as scaffold to regulate protein–protein interactions and the related downstream signaling pathways. Recently, some studies showed that lncRNAs and circRNAs participated in epigenetic modulation of chromatin to regulate gene expression.

The biogenesis and effector machineries of miRNAs

Figure 1
The biogenesis and effector machineries of miRNAs

miRNAs are transcribed as pri-miRNAs by RNA polymerase II. Following processing by the Drosha complex, pre-miRNAs are exported to the cytoplasma by exportin 5 (XPO5). Mature miRNAs are produced by Dicer and TAR RNA-binding protein 2 (TARBP2)-mediated processing and loaded into the RISC. miRNAs function through degrading mRNA or repressing translation to regulate cancer.

Figure 1
The biogenesis and effector machineries of miRNAs

miRNAs are transcribed as pri-miRNAs by RNA polymerase II. Following processing by the Drosha complex, pre-miRNAs are exported to the cytoplasma by exportin 5 (XPO5). Mature miRNAs are produced by Dicer and TAR RNA-binding protein 2 (TARBP2)-mediated processing and loaded into the RISC. miRNAs function through degrading mRNA or repressing translation to regulate cancer.

The biogenesis and effector machineries of lncRNAs

Figure 2
The biogenesis and effector machineries of lncRNAs

LncRNAs are transcribed by RNA polymerase II. LncRNAs function as guide molecules to recruit factors for chromatin remodeling, as decoys to hinder transcriptional factors from the promoter of target gene, as sponges of associated miRNA to prevent degradation of target gene, or as scaffolds to facilitate interaction of associated proteins.

Figure 2
The biogenesis and effector machineries of lncRNAs

LncRNAs are transcribed by RNA polymerase II. LncRNAs function as guide molecules to recruit factors for chromatin remodeling, as decoys to hinder transcriptional factors from the promoter of target gene, as sponges of associated miRNA to prevent degradation of target gene, or as scaffolds to facilitate interaction of associated proteins.

The biogenesis and effector machineries of circRNAs

Figure 3
The biogenesis and effector machineries of circRNAs

circRNAs are transcribed by RNA polymerase II and cyclized by backsplicing. circRNAs function as scaffolds to facilitate interaction of associated proteins, or as miRNA sponges to prevent degradation of target gene.

Figure 3
The biogenesis and effector machineries of circRNAs

circRNAs are transcribed by RNA polymerase II and cyclized by backsplicing. circRNAs function as scaffolds to facilitate interaction of associated proteins, or as miRNA sponges to prevent degradation of target gene.

Abundant evidences have shown that ncRNAs play crucial roles in human malignancies. They can work as oncogenes or suppressors to regulate cancer initiation and progression. Many ncRNAs can be released from cancer cells into blood or urine and act as diagnostic markers or prognostic indicators. Here, we mainly focus on overviewing the recently emerging studies of the four major ncRNAs in cancer.

Numerous studies have shown the important role of miRNAs in various cancers. Many miRNAs are highly expressed in cancer cells and promote cancer development. Some miRNAs even regulate the progression of multiple cancers. miR-126 is known to be highly expressed in breast [6] and colorectal cancers [7]. Recently, Silva et al. showed that miR-126 was also highly expressed in human B-ALL [8]. Forced expression of miR-126 in mouse hematopoietic stem progenitor cells resulted in B-cell leukemia. Further study revealed that overexpression of miR-126 down-regulated the expression of p53 and its associated genes [9], while suppression of miR-126 triggered apoptosis and inhibited B-ALL progression in xenograft mice. miR-155 has been identified as an oncogene in many kinds of cancers, including colon, breast, lung, gastric and liver cancer [10–14]. In agreement with its oncogenic roles, miR-155 has been regarded as a therapeutic target in different cancers. Recently, miR-155 was further shown to be up-regulated in plexiform neurofibromas [15]. Up-regulated miR-155 increased proliferation and sphere formation of plexiform neurofibromas initiating cells. Inversely, anti-miR-155 nucleic acid decreased tumor number in mouse spontaneous plexiform neurofibromas model. miR-215 is another oncogene and up-regulated in glioblastoma by hypoxia [16]. Hypoxia-elevated miR-215 targets epigenetic regulator KDM1B, to regulate the related downstream signaling and thus maintain glioblastoma initiating cell growth [17]. Some miRNAs, such as miR-105 can be secreted by cancer cells via exosome to modulate tumor microenvironment. miR-105 is highly expressed in metastatic breast cancer cells [18]. After secretion, miR-105-containing exosomes enter into endothelial monolayers and suppress the expression of the tight junction protein ZO-1, resulting in elevated vascular permeability and cancer metastasis [18]. Zhuo et al. further showed that circulating miR-105 could act as a clinical indicator of breast metastasis.

Some miRNAs have been regarded as tumor suppressors, such as let-7 and miR-34a. The let-7 miRNAs contain many family members. Most of them are down-regulated in different types of cancers, including hepatocellular carcinoma [19], non-small cell lung cancer [20], prostate cancer [21], breast cancer [22], colon cancer [23] and pancreatic cancer [24]. Let-7 miRNAs target and down-regulate many oncogenic genes including E2F1, ARID3B, K-RAS and c-Myc, resulting in suppression of tumor progression [25]. Furthermore, higher levels of let-7 indicate better prognosis in hepatocellular carcinoma and thyroid carcinoma [26]. Recently, Pablo et al. showed that let-7 also targeted Long Interspersed Element class 1 (LINE-1), the only autonomously active transposable elements highly expressed in lung cancer, to impair its translation and reduce its mobilization [27]. They proposed that Let-7 sustained somatic genome integrity by restricting LINE-1 retrotransposition. miR-34a is another tumor suppressor that plays an important role in suppressing cancer progression. We previously showed that miR-34a was critical for asymmetric division of colon cancer stem cells (CCSCs) [28]. Silencing miR-34a inhibits asymmetric cell division, promotes CCSC self-renewal and thus accelerates colon cancer progression. Kennerdell et al. also showed that miR-34a was decreased in most of the colon cancer cell lines and low levels of miR-34a predicted poor prognosis [29]. Tumor suppressor miR-29 is identified in microenvironment of chronic lymphocytic leukemia (CLL). In CLL, miR-29 targets Tumor-Necrosis Factor (TRAF4), a factor associated with CD40 activation and B-cell receptor signaling [30]. Down-regulated miR-29 elevates the expression of TRAF4 and activates CD40 signaling in CLL. Reversely, activated CD40 represses the expression of miR-29. miR-29-TRAF4-CD40 signaling axis plays as a negative feedback regulation loop in CLL. We have summarized the recent studies on miRNA functions in cancer in Table 1.

Table 1
List of miRNAs and their role in cancer development
Cancer typeOncogeneTumor suppressor
Breast let-7 sustains self-renewing [73miR-30 promotes apoptosis [76
 miR-141 promotes metastasis [74miR-140 inhibits proliferation [77
 mi-766 promotes proliferation, chemoresistance, migration and invasion [75miR-143 inhibits proliferation [78
    miR-600 inhibits stemness [79
    miR-7 inhibits cell growth [80
Lung miR-518b promotes proliferation and metastasis [81let-7 represses expression of k-Ras [83
 miR-629 promotes proliferation and metastasis [82miR-200a represses EMT [84
    miR-190b suppresses cell growth [85
Ovarian let-7 elevates multiple drug resistance [86miR-134-3p reduces multiple drug resistance [87
    miR-126 inhibits proliferation [88
Prostate miR-141 promotes proliferation [89miR-145 inhibits proliferation and invasion [90
    miR-34 reduces stemness [91
Colorectal miR-1274a promotes proliferation and metastasis [92miR-137-3p inhibits migration [94
 miR-592 promotes proliferation and clonogenicity [93miR-22 represses invasion [95
    miR-3622a-3p reduces stemness [96
Brain miR-137 promotes proliferation [97miR-128 inhibits proliferation and differentiation [98
    miR-136 promotes apoptosis [99
Pancreatic miR-200b-3p sustaining self-renewing [100miR-142-5p inhibits proliferation [101
Liver miR-93-5p suppresses senescence [102miR-342-3p inhibits proliferation [103
    miR-1225-5p inhibits proliferation and invasion [104
    miR-589 suppresses stemness [105
Stomach    miR-635 inhibits proliferation and invasion [106
    miR-876-5p inhibits proliferation and invasion [107
Leukemia miR15/16 Sustains stemness [108miR-99 suppresses stemness [109
    miR-185 impairs survival of drug-resistant cells [110
    miR-146a alleviates myeloma proliferation [111
Cancer typeOncogeneTumor suppressor
Breast let-7 sustains self-renewing [73miR-30 promotes apoptosis [76
 miR-141 promotes metastasis [74miR-140 inhibits proliferation [77
 mi-766 promotes proliferation, chemoresistance, migration and invasion [75miR-143 inhibits proliferation [78
    miR-600 inhibits stemness [79
    miR-7 inhibits cell growth [80
Lung miR-518b promotes proliferation and metastasis [81let-7 represses expression of k-Ras [83
 miR-629 promotes proliferation and metastasis [82miR-200a represses EMT [84
    miR-190b suppresses cell growth [85
Ovarian let-7 elevates multiple drug resistance [86miR-134-3p reduces multiple drug resistance [87
    miR-126 inhibits proliferation [88
Prostate miR-141 promotes proliferation [89miR-145 inhibits proliferation and invasion [90
    miR-34 reduces stemness [91
Colorectal miR-1274a promotes proliferation and metastasis [92miR-137-3p inhibits migration [94
 miR-592 promotes proliferation and clonogenicity [93miR-22 represses invasion [95
    miR-3622a-3p reduces stemness [96
Brain miR-137 promotes proliferation [97miR-128 inhibits proliferation and differentiation [98
    miR-136 promotes apoptosis [99
Pancreatic miR-200b-3p sustaining self-renewing [100miR-142-5p inhibits proliferation [101
Liver miR-93-5p suppresses senescence [102miR-342-3p inhibits proliferation [103
    miR-1225-5p inhibits proliferation and invasion [104
    miR-589 suppresses stemness [105
Stomach    miR-635 inhibits proliferation and invasion [106
    miR-876-5p inhibits proliferation and invasion [107
Leukemia miR15/16 Sustains stemness [108miR-99 suppresses stemness [109
    miR-185 impairs survival of drug-resistant cells [110
    miR-146a alleviates myeloma proliferation [111

Like miRNAs, lncRNAs also play as oncogenes or suppressors to regulate tumorigenesis and progression. HOTTIP, derived from HOXA gene, has been shown to be highly expressed in many caners. Recently, Luo et al. demonstrated that HOTTIP played as an oncogene in acute myeloid leukemia (AML) [31]. They found that HOTTIP was aberrantly elevated in AML and worked as an epigenetic regulator to modulate hematopoietic gene-associated chromatin signature and transcription. LncTCF7 is another lncRNA transcribed from TCF gene locus. Wang et al. showed that lncTCF7 was highly expressed in liver cancer stem cells (CSCs) and was important for liver CSC self-renewal [32]. Mechanistically, LncTCF7 recruited SWI/SNF complex to TCF7 promoter and activated Wnt signaling for sustaining liver CSC self-renewal. Epigenetically induced lncRNA1 (EPIC1) is first identified as an oncogene in luminal B breast cancer [33]. Recently, EPIC1 has been found to be highly expressed in glioma [34], cholangiocarcinoma [35], pancreatic [36] and lung cancers [37]. Elevated EPIC1 promotes tumor growth by interacting with MYC to elevate its target genes, such as CDKN1A, CCNA2 and CDC20 [33]. Recently, Li et al. showed that linc0624, an antisense strand of CHD1L, worked as molecular decoy to segregate HDAC6–TRIM28–ZNF354C transcriptional corepressor complex away from the specific genomic loci, thus promoting the progression of hepatocellular carcinoma [38].

Some lncRNAs act as suppressors to suppress cancer development and progression. Pvt1b, a p53-dependent isoform of the lncRNA, suppresses lung cancer growth by down-regulating c-Myc expression [39]. DIRC3 is down-regulated in melanomas and its lower expression level is associated with shorter survival [40]. Further study reveals that DIRC3 inhibits proliferation of melanoma cells via elevating the expression of tumor suppressor IGFBP5. Recently, SATB2-AS1, an antisense transcript of tumor suppressor SATB2, has also been shown to be down-regulated in colorectal cancer. Knockdown of SATB-AS1 significantly increases cell proliferation, migration and invasion [41]. Mechanistically, SATB-AS1 works as a scaffold to recruit p300 to SATB2 promoter, up-regulating SATB2. Elevated SATB2 recruits HDAC1 to Snail promoter, suppressing Snail expression and epithelial-to-mesenchymal transition. MALAT1, a nuclear lncRNA, is also a tumor suppressor in breast cancer. Jong et al. showed that knockout of MALAT1 promoted breast cancer metastasis through disrupting the recruitment of transcription factor TEAD and co-activator YAP to the target gene promoters [42]. We have summarized the recent studies on lncRNA functions in cancer in Table 2.

Table 2
List of lncRNAs and their role in cancer development
Cancer typeOncogeneTumor suppressor
Breast 00617 promotes metastasis [112   
 XIST promotes proliferation and inhibit apoptosis [113SCIRT restrains transcriptional program of tumor-initiating cells [121
 H19 promotes stemness [114   
 ROR elevates multiple drug resistance [115PVT1 inhibits cell growth [122
 HOTAIR promotes proliferation and metastasis [116   
 01271 promotes metastasis [117   
 DILA1 promotes proliferation and multiple drug resistance [118   
 ERINA promotes cell-cycle progression [119   
 TROJAN promotes proliferation and invasion [120   
Ovarian HOTAIR promotes stemness [123   
 LINP1 promotes proliferation and invasion [124   
Brain HAS2-AS1 promotes invasion [125ROR inhibits proliferation [129
 H19 promotes angiogenesis [126   
 CRNDE promotes proliferation and invasion [127   
 XIST promotes proliferation and invasion [128   
Liver HOTAIR promotes proliferation and invasion [130DILC suppresses stemness [136
    PTENP1 suppresses proliferation and invasion [137
 β-Catm sustains self-renewing [131   
 TRG-AS1 promotes proliferation and invasion [132TSLNC8 suppresses proliferation and metastasis [137
 HUR1 promotes proliferation [133 inhibits cell growth, cell survival and transformation [138
 01138 promotes proliferation, invasion and metastasis [134TCAM1P-004 inhibits cell growth, cell survival and transformation [138
 MALAT1 promotes proliferation and inhibit apoptosis [135RP11-598D14.1   
Colon URHC promotes proliferation and invasion [139PGM5-AS1 inhibits proliferation and invasion [142
 CCAT2 elevates chromosomal instability and promote proliferation and invasion [14000959 suppresses migration and invasion [143
 PURPL promotes cell growth [141   
Lung TRINGS protects cancer cells from necrosis [14300261 active DNA damage response and block proliferation [146
 MIR22HG promotes cell survival [144   
 GUARDIN sustains genomic stability and prevent apoptosis and senescence [145   
Leukemia CRNDE promotes proliferation [147PANDA inhibits cell growth [148
Cancer typeOncogeneTumor suppressor
Breast 00617 promotes metastasis [112   
 XIST promotes proliferation and inhibit apoptosis [113SCIRT restrains transcriptional program of tumor-initiating cells [121
 H19 promotes stemness [114   
 ROR elevates multiple drug resistance [115PVT1 inhibits cell growth [122
 HOTAIR promotes proliferation and metastasis [116   
 01271 promotes metastasis [117   
 DILA1 promotes proliferation and multiple drug resistance [118   
 ERINA promotes cell-cycle progression [119   
 TROJAN promotes proliferation and invasion [120   
Ovarian HOTAIR promotes stemness [123   
 LINP1 promotes proliferation and invasion [124   
Brain HAS2-AS1 promotes invasion [125ROR inhibits proliferation [129
 H19 promotes angiogenesis [126   
 CRNDE promotes proliferation and invasion [127   
 XIST promotes proliferation and invasion [128   
Liver HOTAIR promotes proliferation and invasion [130DILC suppresses stemness [136
    PTENP1 suppresses proliferation and invasion [137
 β-Catm sustains self-renewing [131   
 TRG-AS1 promotes proliferation and invasion [132TSLNC8 suppresses proliferation and metastasis [137
 HUR1 promotes proliferation [133 inhibits cell growth, cell survival and transformation [138
 01138 promotes proliferation, invasion and metastasis [134TCAM1P-004 inhibits cell growth, cell survival and transformation [138
 MALAT1 promotes proliferation and inhibit apoptosis [135RP11-598D14.1   
Colon URHC promotes proliferation and invasion [139PGM5-AS1 inhibits proliferation and invasion [142
 CCAT2 elevates chromosomal instability and promote proliferation and invasion [14000959 suppresses migration and invasion [143
 PURPL promotes cell growth [141   
Lung TRINGS protects cancer cells from necrosis [14300261 active DNA damage response and block proliferation [146
 MIR22HG promotes cell survival [144   
 GUARDIN sustains genomic stability and prevent apoptosis and senescence [145   
Leukemia CRNDE promotes proliferation [147PANDA inhibits cell growth [148

circRNAs are recently identified ncRNA type and act as either tumor suppressors or oncogenes. For instance, circCDYL is down-regulated in colon cancer, bladder cancer and triple-negative breast cancer and its underexpression is positively correlated with patient survival [43]. Further studies shows that overexpression of circCDYL promots apoptosis and inhibits proliferation of breast cancer cells [44]. Mechanically, circCDYL functions as a sponge to protect TP53INP1 from miR-190a-3p-mediated down-regulation [45]. The expression of circFOXO3 is lower in the breast cancers compared with that in adjacent benign tissues [46]. Interestingly, circFOXO3 works not only as an miRNA sponge to protect Foxo3 mRNA from attack, but also as a scaffold to bridge p21 and CDK2 to inhibit cell cycle progression [47].

In contrast with the tumor suppressive roles, some cirRNAs have been identified as oncogenes. circ-CCAC1, also known as cholangiocarcinoma-associated circular RNA1, is highly expressed in cholangiocarcinoma and cholangiocarcinoma-derived endothelial vessels [48]. In tumor cells, circCCAC1 recruits miR-514a-5p to up-regulate YY1 and its downstream gene CAMLG, which elevates the cell activity [48]. In endothelial vessels, circ-CCAC1 up-regulates SH3GL2 by sequestering EZH2, thus reducing intercellular junction protein levels and increasing cell leakiness [48]. circRNAHIPK3 derived from exon 2 of HIPK3 gene is highly expressed in many types of cancer, including glioma [49], prostate cancer [50], breast cancer [51], colorectal cancer [52] and renal cancer [53]. Through screening of 424 miRNAs, 9 miRNAs showed great suppressive ability on the HIPK3 exon 2. Interestingly, all the nine miRNAs have been identified as tumor suppressors and suppressed by circHIPK3 [54]. These studies demonstrate that the expression of circRNAs is dynamically regulated in different cancers, and regulates cancer progression through distinct mechanisms. We have summarized the recent studies on circRNA functions in cancer in Table 3.

Table 3
List of circRNAs and their role in cancer development
Cancer typeOncogeneTumor suppressor
Breast UBE2D2 elevates multiple drug resistance [149000554 represses EMT [152
    HIPK3 inhibits proliferation and invasion [153
 DCAF6 sustains stemness [150   
 DNMT1 activates autophage [151   
Lung MYLK promotes glycolysis and proliferation [154   
 CPA4 promotes stemness [155   
 LDLRAD3 promotes proliferation and survival [156   
Colon UBAP2 promotes proliferation and metastasis [157   
Brain POSTN promotes proliferation and metastasis [158SHPRH suppresses proliferation [159
Liver 0000517 promotes glycolysis and clonogenicity [160   
 0067934 promotes proliferation and metastasis [161   
 ASAP1 promotes proliferation, colony formation migration and invasion [162   
 CDYL sustains stemness [163   
 10720 promotes EMT [164   
Gastric 0000144 promotes proliferation and clonogenicity [165   
 NRIP1 promotes proliferation and glycolysis [166   
Ovarian FGFR3 promotes proliferation and EMT [1679119 suppresses proliferation [169
    ITCH suppresses proliferation, invasion and glycolysis [170
 UBAP2 promotes proliferation and inhibits apoptosis [168   
    MTO1 suppresses proliferation and invasion [171
Cancer typeOncogeneTumor suppressor
Breast UBE2D2 elevates multiple drug resistance [149000554 represses EMT [152
    HIPK3 inhibits proliferation and invasion [153
 DCAF6 sustains stemness [150   
 DNMT1 activates autophage [151   
Lung MYLK promotes glycolysis and proliferation [154   
 CPA4 promotes stemness [155   
 LDLRAD3 promotes proliferation and survival [156   
Colon UBAP2 promotes proliferation and metastasis [157   
Brain POSTN promotes proliferation and metastasis [158SHPRH suppresses proliferation [159
Liver 0000517 promotes glycolysis and clonogenicity [160   
 0067934 promotes proliferation and metastasis [161   
 ASAP1 promotes proliferation, colony formation migration and invasion [162   
 CDYL sustains stemness [163   
 10720 promotes EMT [164   
Gastric 0000144 promotes proliferation and clonogenicity [165   
 NRIP1 promotes proliferation and glycolysis [166   
Ovarian FGFR3 promotes proliferation and EMT [1679119 suppresses proliferation [169
    ITCH suppresses proliferation, invasion and glycolysis [170
 UBAP2 promotes proliferation and inhibits apoptosis [168   
    MTO1 suppresses proliferation and invasion [171

Generally, piRNAs are expressed in the germline, but recent studies have demonstrated that piRNAs are also expressed in cancer cells, where piRNAs play crucial role in repression of transposable elements cleaving, deadenylation and decay. For instance, piRNA-823 has been identified to regulate proliferation and migration of a variety of cancer cells [55,56]. In multiple myeloma (MM), silencing piRNA-823 induces the expression of apoptosis-related genes by modulating de novo DNA methylation [57]. In colorectal cancer, inhibition of piR-823 suppresses cell proliferation and induces cell apoptosis by activating apoptosis-associated transcription factor HSF1 [58]. Cordeiro et al. examined several piRNA pathways in classical Hodgkin lymphoma and found that piR-651 was down-regulated in classic Hodgkin lymphoma patients compared with that in healthy controls. In addition, low levels of piR-651 are positively correlated with short overall survival of the classic Hodgkin lymphoma patients [59]. piRNA-54265 is highly expressed in cancer tissue and serum of the colorectal cancer patients. piRNA-54265 activates STAT3 signaling by facilitating PIWIL2/STAT3/SRC complex assemble [60]. Thus, piRNAs are also important for cancer progression.

Recently, several ncRNAs have been used as novel therapeutic targets to treat cancers. Considering different roles of ncRNAs in specific cancer types, ncRNA mimics, antisense oligonucleotides (ASOs) or small molecule drugs have been applied for the treatment of cancers. miR-34a mimic packaged in a liposomal nanoparticle, called MRX34, has gone through a phase I clinical trial in patients with advanced solid tumor [61]. Moreover, miR-31-3p and miR-31-5p have been considered as colorectal cancer predictive biomarkers in phase III clinical trial [62,63]. Li et al. took a computational approach to design and identify small molecules on the base of the predicted miRNA hairpin precursor structures. They found that a benzimidazole analog selectively inhibited the processing of pri-miR-96 into oncogenic miR-96 and thus elevated miR-96 target gene expression and promoted cancer cell apoptosis [64]. Further optimization of benzimidazole turns out a dimeric benzimidazole and bisbenzimide compound, targaprimir-96, which shows a favorable pharmacokinetics profile and is effective at releasing tumor burden in a triple-negative breast cancer xenograft mouse model [65]. Another dimeric benzimidazole and bisbenzimide analog, targaprimir (TGP)-515, is identified to target pri-miR-515, resulting in up-regulation of human epidermal growth factor receptor 2 and enhancement of the therapeutic efficacy of the anti-human epidermal growth factor receptor 2 antibody in breast cancer cells [66]. Likewise, a bisbenzimide analog called targarpremir-210, also called TGP-210, is identified to bind to pre-miR-210, leading to the inhibition of processing of mature miR-210 and suppressing the outgrowth of xenograft tumors in mice [67]. The attachment of a nuclease recruitment module on to targarpremir-210 offers a conjugate, TGP-210-RL, which is able to recruit RNase L on to pre-miR-210 to induce the degradation of pre-miR-210. Compared with TGP-210, TGP-210-RL conjugate exhibits higher binding affinity to the pre-miR-210 while lower affinity to DNA [68]. Recently, an oligonucleotide inhibitor of miR-155, called cobomarsen, has been reported to decrease cell proliferation and induces cell apoptosis in Diffuse Large B-cell Lymphoma. Clinically, this compound efficiently inhibits tumor growth without obvious side effects on the patients, supporting its potential therapeutic application in Diffuse Large B-cell or other types of Lymphoma [69]. Further computational and experimental studies demonstrates that mitoxantrone is able to directly bind to pre-miR-21 and subsequently inhibits Dicer-mediated biogenesis of oncogenic miR-21 [70]. Several studies have demonstrated that ASOs can be used as inhibitors to block lncRNAs [71]. In mouse model, ASOs targeting MALAT1 blocks metastasis of lung cancer cells [72]. Together, targeting ncRNAs has been showing a promising approach for cancer therapy.

ncRNAs contain various classes and participate in regulation of the progression of various types of cancers. Some ncRNAs highly exist in serum or urine of the cancer patient and are capable to work as diagnostic markers or prognostic indicators. Many clinical trials have also been conducted by targeting ncRNAs and exhibited promising therapeutic effects. With deep investigation of the mechanisms, we have been broadening our understanding of ncRNA functions. For instance, miRNAs are originally considered to suppress target gene expression by binding to the 3′-UTR regions. Recently, we have realized that miRNAs could also bind to other regions of the genes and even up-regulate target gene expression. Now we also know that some lncRNAs actually can encode small peptides to regulate biological processes. However, there are still many unknown ncRNAs, particularly the new ncRNA classes with precise roles need to be investigated. Even for the well-known ncRNAs, their function and regulatory mechanisms could be changed with spatial-temporal alteration, such as expression pattern, structure and interacting proteins. Therefore, efforts still need to make to understand the precise function and mechanisms of the ncRNAs.

Targeting ncRNA therapies have been conducted in many clinical trials. Emerging technologies and new approaches will contribute to even better outcomes. For instance, targeting ncRNA approaches could be co-operated with immune therapy or other therapeutic treatments. Human organoids can be used for investigating functions or preclinical effects of ncRNAs in patients. Targeting ncRNAs by CRISPR-mediated gene editing may also be worth trying for certain diseases. Many ncRNAs both functions in physiology and pathology. Therefore, deep investigation of the function and mechanism will help to identify the ncRNAs specifically regulating cancers and reduce the adverse side effects. Overall, ncRNAs are heavily involved in regulating various cancers and targeting ncRNAs have exhibit promising therapeutic effect, while we still need to keep making efforts to reveal the mystery of ncRNA functions.

  • ncRNAs work as oncogenes or tumor suppressors to regulate carcinogenesis and progression.

  • ncRNAs regulate cancer progression through distinct mechanisms and represent potential drug targets or therapeutic entities.

  • Clinical trials have been conducted to treat cancers by targeting ncRNAs and exhibited promising therapeutic effect.

The authors declare that there are no competing interests associated with the manuscript.

This work was partly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB29040100]; the Chinese Ministry of Science and Technology [grant number 2017YFA0504103]; and the National Natural Science Foundation of China [grant numbers 31771513, 81972797].

Huiwen Yan wrote the manuscript. Pengcheng Bu reviewed and edited the manuscript.

     
  • AML

    acute myeloid leukemia

  •  
  • ASO

    antisense oligonucleotide

  •  
  • CCSC

    colon cancer stem cell

  •  
  • circRNA

    circular RNA

  •  
  • CLL

    chronic lymphocytic leukemia

  •  
  • CSC

    cancer stem cell

  •  
  • EPIC1

    epigenetically induced lncRNA1

  •  
  • LINE-1

    long interspersed element class 1

  •  
  • lncRNA

    long non-coding RNA

  •  
  • miRNA

    microRNA

  •  
  • ncRNA

    non-coding RNA

  •  
  • nt

    nucleotide

  •  
  • piRNA

    PIWI interacting RNA

  •  
  • TRAF4

    tumor-necrosis factor 4

  •  
  • B-ALL

    B cell acute lymphocytic leukemia

1.
Kimura
T.
(
2020
)
Non-coding natural antisense RNA: mechanisms of action in the regulation of target gene expression and its clinical implications
.
Yakugaku Zasshi
140
,
687
700
[PubMed]
2.
Vos
P.D.
,
Leedman
P.J.
,
Filipovska
A.
and
Rackham
O.
(
2019
)
Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer
.
Cell. Mol. Life Sci.
76
,
3745
3752
[PubMed]
3.
Zeng
Q.
,
Wan
H.
,
Zhao
S.
,
Xu
H.
,
Tang
T.
,
Oware
K.A.
et al.
(
2020
)
Role of PIWI-interacting RNAs on cell survival: proliferation, apoptosis, and cycle
.
IUBMB Life
79
,
1870
1878
4.
Wang
N.
,
Yu
Y.
,
Xu
B.
,
Zhang
M.
,
Li
Q.
and
Miao
L.
(
2019
)
Pivotal prognostic and diagnostic role of the long noncoding RNA colon cancerassociated transcript 1 expression in human cancer (Review)
.
Mol. Med. Rep.
19
,
771
782
[PubMed]
5.
Zhao
W.
,
An
Y.
,
Liang
Y.
and
Xie
X.W.
(
2014
)
Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer
.
Eur. Rev. Med. Pharmacol. Sci.
18
,
1930
1936
[PubMed]
6.
Li
F.
(
2019
)
Expression and correlation of miR-124 and miR-126 in breast cancer
.
Oncol. Lett.
17
,
5115
5119
[PubMed]
7.
Ebrahimi
F.
,
Gopalan
V.
,
Wahab
R.
,
Lu
C.T.
,
Smith
R.A.
and
Lam
A.K.
(
2015
)
Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance
.
Exp. Cell. Res.
339
,
333
341
[PubMed]
8.
Lechman
E.R.
,
Gentner
B.
,
Ng
S.W.K.
,
Schoof
E.M.
,
van Galen
P.
,
Kennedy
J.A.
et al.
(
2016
)
miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells
.
Cancer Cell
29
,
602
606
[PubMed]
9.
Chen
S.R.
,
Cai
W.P.
,
Dai
X.J.
,
Guo
A.S.
,
Chen
H.P.
,
Lin
G.S.
et al.
(
2019
)
Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways
.
Eur. Rev. Med. Pharmacol. Sci.
23
,
3461
3470
[PubMed]
10.
Al-Haidari
A.A.
,
Syk
I.
and
Thorlacius
H.
(
2017
)
MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA
.
Oncotarget
8
,
14887
14896
[PubMed]
11.
Luan
T.
,
Zhang
X.
,
Wang
S.
,
Song
Y.
,
Zhou
S.
,
Lin
J.
et al.
(
2017
)
Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p
.
Oncotarget
8
,
76153
76164
[PubMed]
12.
Shao
C.
,
Yang
F.
,
Qin
Z.
,
Jing
X.
,
Shu
Y.
and
Shen
H.
(
2019
)
The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: a systematic review with meta-analysis
.
BMC Cancer
19
,
1103
[PubMed]
13.
Prinz
C.
and
Weber
D.
(
2020
)
MicroRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: critical importance of miR-155
.
Oncotarget
11
,
894
904
[PubMed]
14.
Yu
Q.
,
Xu
X.P.
,
Yin
X.M.
and
Peng
X.Q.
(
2020
)
miR-155-5p increases the sensitivity of liver cancer cells to adriamycin by regulating ATG5-mediated autophagy
.
Neoplasma
68
,
87
95
15.
Na
Y.
,
Hall
A.
,
Choi
K.
,
Hu
L.
,
Rose
J.
,
Coover
R.A.
et al.
(
2020
)
MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK
.
Oncogene
40
,
951
963
[PubMed]
16.
Hu
J.
and
Wang
X.F.
(
2016
)
HIF-miR-215-KDM1B promotes glioma-initiating cell adaptation to hypoxia
.
Cell Cycle
15
,
1939
1940
[PubMed]
17.
Hu
J.
,
Sun
T.
,
Wang
H.
,
Chen
Z.
,
Wang
S.
,
Yuan
L.
et al.
(
2016
)
MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B
.
Cancer Cell.
29
,
49
60
[PubMed]
18.
Zhou
W.
,
Fong
M.Y.
,
Min
Y.
,
Somlo
G.
,
Liu
L.
,
Palomares
M.R.
et al.
(
2014
)
Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis
.
Cancer Cell.
25
,
501
515
[PubMed]
19.
Jin
B.
,
Wang
W.
,
Meng
X.X.
,
Du
G.
,
Li
J.
,
Zhang
S.Z.
et al.
(
2016
)
Let-7 inhibits self-renewal of hepatocellular cancer stem-like cells through regulating the epithelial-mesenchymal transition and the Wnt signaling pathway
.
BMC Cancer
16
,
863
[PubMed]
20.
Li
X.X.
,
Di
X.
,
Cong
S.
,
Wang
Y.
and
Wang
K.
(
2018
)
The role of let-7 and HMGA2 in the occurrence and development of lung cancer: a systematic review and meta-analysis
.
Eur. Rev. Med. Pharmacol. Sci.
22
,
8353
8366
[PubMed]
21.
Wagner
S.
,
Ngezahayo
A.
,
Murua Escobar
H.
and
Nolte
I.
(
2014
)
Role of miRNA let-7 and its major targets in prostate cancer
.
Biomed. Res. Int.
2014
,
376326
[PubMed]
22.
Thammaiah
C.K.
and
Jayaram
S.
(
2016
)
Role of let-7 family microRNA in breast cancer
.
Noncoding RNA Res.
1
,
77
82
[PubMed]
23.
Mizuno
R.
,
Kawada
K.
and
Sakai
Y.
(
2018
)
The molecular basis and therapeutic potential of Let-7 microRNAs against colorectal cancer
.
Can. J. Gastroenterol. Hepatol.
2018
,
5769591
[PubMed]
24.
Nweke
E.E.
and
Brand
M.
(
2020
)
Downregulation of the let-7 family of microRNAs may promote insulin receptor/insulin-like growth factor signalling pathways in pancreatic ductal adenocarcinoma
.
Oncol. Lett.
20
,
2613
2620
[PubMed]
25.
Chirshev
E.
,
Oberg
K.C.
,
Ioffe
Y.J.
and
Unternaehrer
J.J.
(
2019
)
Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer
.
Clin. Transl. Med.
8
,
24
[PubMed]
26.
Perdas
E.
,
Stawski
R.
,
Kaczka
K.
and
Zubrzycka
M.
(
2020
)
Analysis of Let-7 family miRNA in plasma as potential predictive biomarkers of diagnosis for papillary thyroid cancer
.
Diagnostics (Basel)
10
,
130
134
[PubMed]
27.
Tristan-Ramos
P.
,
Rubio-Roldan
A.
,
Peris
G.
,
Sanchez
L.
,
Amador-Cubero
S.
,
Viollet
S.
et al.
(
2020
)
The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition
.
Nat. Commun.
11
,
5712
[PubMed]
28.
Bu
P.
,
Wang
L.
,
Chen
K.Y.
,
Srinivasan
T.
,
Murthy
P.K.
,
Tung
K.L.
et al.
(
2016
)
A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer
.
Cell Stem Cell
18
,
189
202
[PubMed]
29.
Kennerdell
J.R.
,
Liu
N.
and
Bonini
N.M.
(
2018
)
MiR-34 inhibits polycomb repressive complex 2 to modulate chaperone expression and promote healthy brain aging
.
Nat. Commun.
9
,
4188
[PubMed]
30.
Sharma
S.
,
Pavlasova
G.M.
,
Seda
V.
,
Cerna
K.A.
,
Vojackova
E.
,
Filip
D.
et al.
(
2020
)
miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors
.
blood.2020005627
,
[PubMed]
31.
Luo
H.
,
Zhu
G.
,
Xu
J.
,
Lai
Q.
,
Yan
B.
,
Guo
Y.
et al.
(
2019
)
HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice
.
Cancer Cell
36
,
645.e8
659.e8
32.
Wang
Y.
,
He
L.
,
Du
Y.
,
Zhu
P.
,
Huang
G.
,
Luo
J.
et al.
(
2015
)
The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling
.
Cell Stem Cell
16
,
413
425
[PubMed]
33.
Wang
Z.
,
Yang
B.
,
Zhang
M.
,
Guo
W.
,
Wu
Z.
,
Wang
Y.
et al.
(
2018
)
lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and Promotes cell-cycle progression in cancer
.
Cancer Cell
33
,
706e9
720e9
34.
Wang
J.
,
Yang
S.
,
Ji
Q.
,
Li
Q.
,
Zhou
F.
,
Li
Y.
et al.
(
2020
)
Long non-coding RNA EPIC1 promotes cell proliferation and motility and drug resistance in glioma
.
Mol. Ther. Oncol.
17
,
130
137
[PubMed]
35.
Li
Y.
,
Cai
Q.
,
Li
W.
,
Feng
F.
and
Yang
L.
(
2018
)
Long non-coding RNA EPIC1 promotes cholangiocarcinoma cell growth
.
Biochem. Biophys. Res. Commun.
504
,
654
659
[PubMed]
36.
Xia
P.
,
Liu
P.
,
Fu
Q.
,
Liu
C.
,
Luo
Q.
,
Zhang
X.
et al.
(
2020
)
Long noncoding RNA EPIC1 interacts with YAP1 to regulate the cell cycle and promote the growth of pancreatic cancer cells
.
Biochem. Biophys. Res. Commun.
522
,
978
985
[PubMed]
37.
Zhang
B.
,
Lu
H.Y.
,
Xia
Y.H.
,
Jiang
A.G.
and
Lv
Y.X.
(
2018
)
Long non-coding RNA EPIC1 promotes human lung cancer cell growth
.
Biochem. Biophys. Res. Commun.
503
,
1342
1348
[PubMed]
38.
Li
Z.
,
Lu
X.
,
Liu
Y.
,
Zhao
J.
,
Ma
S.
,
Yin
H.
et al.
(
2020
)
Gain of LINC00624 enhances liver cancer progression by disrupting the HDAC6-TRIM28-ZNF354C corepressor complex
.
Hepatology
[PubMed]
39.
Olivero
C.E.
,
Martinez-Terroba
E.
,
Zimmer
J.
,
Liao
C.
,
Tesfaye
E.
,
Hooshdaran
N.
et al.
(
2020
)
p53 activates the long noncoding RNA Pvt1b to inhibit Myc and suppress tumorigenesis
.
Mol. Cell
77
,
761e8
774e8
40.
Coe
E.A.
,
Tan
J.Y.
,
Shapiro
M.
,
Louphrasitthiphol
P.
,
Bassett
A.R.
,
Marques
A.C.
et al.
(
2019
)
The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor
.
PLoS Genet.
15
,
e1008501
[PubMed]
41.
Wang
Y.Q.
,
Jiang
D.M.
,
Hu
S.S.
,
Zhao
L.
,
Wang
L.
,
Yang
M.H.
et al.
(
2019
)
SATB2-AS1 suppresses colorectal carcinoma aggressiveness by inhibiting SATB2-dependent Snail transcription and epithelial-mesenchymal transition
.
Cancer Res.
79
,
3542
3556
[PubMed]
42.
Kim
J.
,
Piao
H.L.
,
Kim
B.J.
,
Yao
F.
,
Han
Z.
,
Wang
Y.
et al.
(
2018
)
Long noncoding RNA MALAT1 suppresses breast cancer metastasis
.
Nat. Genet.
50
,
1705
1715
[PubMed]
43.
Wang
S.
,
Liu
F.
,
Ma
H.
,
Cui
X.
,
Yang
S.
and
Qin
R.
(
2020
)
circCDYL acts as a tumor suppressor in triple negative breast cancer by sponging miR-190a-3p and upregulating TP53INP1
.
Clin. Breast Cancer
20
,
422
430
44.
Liang
G.
,
Ling
Y.
,
Mehrpour
M.
,
Saw
P.E.
,
Liu
Z.
,
Tan
W.
et al.
(
2020
)
Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression
.
Mol. Cancer
19
,
65
[PubMed]
45.
Wang
S.
,
Liu
F.
,
Ma
H.
,
Cui
X.
,
Yang
S.
and
Qin
R.
(
2020
)
circCDYL acts as a tumor suppressor in triple negative breast cancer by sponging miR-190a-3p and upregulating TP53INP1
.
Clin. Breast Cancer
20
,
422
430
[PubMed]
46.
Du
W.W.
,
Fang
L.
,
Yang
W.
,
Wu
N.
,
Awan
F.M.
,
Yang
Z.
et al.
(
2017
)
Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity
.
Cell Death Differ.
24
,
357
370
[PubMed]
47.
Du
W.W.
,
Yang
W.
,
Liu
E.
,
Yang
Z.
,
Dhaliwal
P.
and
Yang
B.B.
(
2016
)
Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2
.
Nucleic Acids Res.
44
,
2846
2858
[PubMed]
48.
Xu
Y.
,
Leng
K.
,
Yao
Y.
,
Kang
P.
,
Liao
G.
,
Han
Y.
et al.
(
2021
)
A circular RNA, Cholangiocarcinoma‐Associated Circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers
.
Hepatology
,
73
,
1419
1435
[PubMed]
49.
Liu
Z.
,
Guo
S.
,
Sun
H.
,
Bai
Y.
,
Song
Z.
and
Liu
X.
(
2020
)
Circular RNA CircHIPK3 elevates CCND2 expression and promotes cell proliferation and invasion through miR-124 in glioma
.
Front. Genet.
11
,
1013
[PubMed]
50.
Chen
D.
,
Lu
X.
,
Yang
F.
and
Xing
N.
(
2019
)
Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression
.
Cancer Manag. Res.
11
,
1415
1423
[PubMed]
51.
Chen
Z.G.
,
Zhao
H.J.
,
Lin
L.
,
Liu
J.B.
,
Bai
J.Z.
and
Wang
G.S.
(
2020
)
Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR-193a/HMGB1/PI3K/AKT axis
.
Thorac. Cancer
11
,
2660
2671
[PubMed]
52.
Yan
Y.
,
Su
M.
and
Qin
B.
(
2020
)
CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal
.
Biochem. Biophys. Res. Commun.
524
,
839
846
[PubMed]
53.
Han
B.
,
Shaolong
E.
,
Luan
L.
,
Li
N.
and
Liu
X.
(
2020
)
CircHIPK3 promotes clear cell renal cell carcinoma (ccRCC) cells proliferation and metastasis via altering of miR-508-3p/CXCL13 signal
.
Onco Targets Ther.
13
,
6051
6062
[PubMed]
54.
Hu
D.
and
Zhang
Y.
(
2019
)
Circular RNA HIPK3 promotes glioma progression by binding to miR-124-3p
.
Gene
690
,
81
89
[PubMed]
55.
Feng
J.
,
Yang
M.
,
Wei
Q.
,
Song
F.
,
Zhang
Y.
,
Wang
X.
et al.
(
2020
)
Novel evidence for oncogenic piRNA-823 as a promising prognostic biomarker and a potential therapeutic target in colorectal cancer
.
J. Cell. Mol. Med.
56.
Yan
H.
,
Wu
Q.L.
,
Sun
C.Y.
,
Ai
L.S.
,
Deng
J.
,
Zhang
L.
et al.
(
2015
)
piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma
.
Leukemia
29
,
196
206
[PubMed]
57.
Li
B.
,
Hong
J.
,
Hong
M.
,
Wang
Y.
,
Yu
T.
,
Zang
S.
et al.
(
2019
)
piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment
.
Oncogene
38
,
5227
5238
[PubMed]
58.
Yin
J.
,
Jiang
X.Y.
,
Qi
W.
,
Ji
C.G.
,
Xie
X.L.
,
Zhang
D.X.
et al.
(
2017
)
piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1
.
Cancer Sci.
108
,
1746
1756
[PubMed]
59.
Cordeiro
A.
,
Navarro
A.
,
Gaya
A.
,
Diaz-Beya
M.
,
Gonzalez-Farre
B.
,
Castellano
J.J.
et al.
(
2016
)
PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma
.
Oncotarget
7
,
46002
46013
[PubMed]
60.
Mai
D.
,
Zheng
Y.
,
Guo
H.
,
Ding
P.
,
Bai
R.
,
Li
M.
et al.
(
2020
)
Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of human colorectal cancer
.
Theranostics
10
,
8468
8478
[PubMed]
61.
Hong
D.S.
,
Kang
Y.K.
,
Borad
M.
,
Sachdev
J.
,
Ejadi
S.
,
Lim
H.Y.
et al.
(
2020
)
Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours
.
Br. J. Cancer
122
,
1630
1637
[PubMed]
62.
Anandappa
G.
,
Lampis
A.
,
Cunningham
D.
,
Khan
K.H.
,
Kouvelakis
K.
,
Vlachogiannis
G.
et al.
(
2019
)
miR-31-3p expression and benefit from anti-EGFR inhibitors in metastatic colorectal cancer patients enrolled in the Prospective Phase II PROSPECT-C Trial
.
Clin. Cancer Res.
25
,
3830
3838
[PubMed]
63.
Sur
D.
,
Cainap
C.
,
Burz
C.
,
Havasi
A.
,
Chis
I.C.
,
Vlad
C.
et al.
(
2019
)
The role of miRNA -31-3p and miR-31-5p in the anti-EGFR treatment efficacy of wild-type K-RAS metastatic colorectal cancer. Is it really the next best thing in miRNAs?
J. BUON.
24
,
1739
1746
[PubMed]
64.
Li
Y.
and
Disney
M.D.
(
2018
)
Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype
.
ACS Chem. Biol.
13
,
3065
3071
[PubMed]
65.
Velagapudi
S.P.
,
Cameron
M.D.
,
Haga
C.L.
,
Rosenberg
L.H.
,
Lafitte
M.
,
Duckett
D.R.
et al.
(
2016
)
Design of a small molecule against an oncogenic noncoding RNA
.
Proc. Natl. Acad. Sci. U.S.A.
113
,
5898
5903
[PubMed]
66.
Costales
M.G.
,
Hoch
D.G.
,
Abegg
D.
,
Childs-Disney
J.L.
,
Velagapudi
S.P.
,
Adibekian
A.
et al.
(
2019
)
A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to herceptin
.
J. Am. Chem. Soc.
141
,
2960
2974
[PubMed]
67.
Costales
M.G.
,
Suresh
B.
,
Vishnu
K.
and
Disney
M.D.
(
2019
)
Targeted degradation of a hypoxia-associated non-coding RNA enhances the selectivity of a small molecule interacting with RNA
.
Cell Chem. Biol.
26
,
1180.e5
1186.e5
68.
Tahara
H.
,
Kay
M.A.
,
Yasui
W.
and
Tahara
E.
(
2013
)
MicroRNAs in Cancer: the 22nd Hiroshima Cancer Seminar/the 4th Japanese Association for RNA Interference Joint International Symposium, 30 August 2012, Grand Prince Hotel Hiroshima
.
Jpn. J. Clin. Oncol.
43
,
579
582
[PubMed]
69.
Anastasiadou
E.
,
Seto
A.
,
Beatty
X.
,
Hermreck
M.
,
Gilles
M.E.
,
Stroopinsky
D.
et al.
(
2021
)
Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo
.
Clin. Cancer Res.
27
,
1139
1149
[PubMed]
70.
Shi
Z.
,
Zhang
J.
,
Qian
X.
,
Han
L.
,
Zhang
K.
,
Chen
L.
et al.
(
2013
)
AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression
.
Cancer Res.
73
,
5519
5531
[PubMed]
71.
Zhou
T.
,
Kim
Y.
and
MacLeod
A.R.
(
2016
)
Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics
.
Methods Mol. Biol.
1402
,
199
213
[PubMed]
72.
Amodio
N.
,
Stamato
M.A.
,
Juli
G.
,
Morelli
E.
,
Fulciniti
M.
,
Manzoni
M.
et al.
(
2018
)
Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity
.
Leukemia
32
,
1948
1957
[PubMed]
73.
Li
X.
,
Liang
T.
,
Chen
S.S.
,
Wang
M.
,
Wang
R.
,
Li
K.
et al.
(
2020
)
Matrine suppression of self-renewal was dependent on regulation of LIN28A/Let-7 pathway in breast cancer stem cells
.
J. Cell. Biochem.
121
,
2139
2149
[PubMed]
74.
Choi
S.K.
,
Kim
H.S.
,
Jin
T.
,
Hwang
E.H.
,
Jung
M.
and
Moon
W.K.
(
2016
)
Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A
.
BMC Cancer
16
,
570
[PubMed]
75.
Wang
Q.
,
Selth
L.A.
and
Callen
D.F.
(
2017
)
MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4
.
Oncotarget
8
,
29914
29924
[PubMed]
76.
Ouzounova
M.
,
Vuong
T.
,
Ancey
P.B.
,
Ferrand
M.
,
Durand
G.
,
Le-Calvez Kelm
F.
et al.
(
2013
)
MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells
.
BMC Genomics
14
,
139
[PubMed]
77.
Yu
B.
,
You
W.
,
Chen
G.
,
Yu
Y.
and
Yang
Q.
(
2019
)
MiR-140-5p inhibits cell proliferation and metastasis by regulating MUC1 via BCL2A1/MAPK pathway in triple negative breast cancer
.
Cell Cycle
18
,
2641
2650
[PubMed]
78.
Xia
C.
,
Yang
Y.
,
Kong
F.
,
Kong
Q.
and
Shan
C.
(
2018
)
MiR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7
.
Biochimie
147
,
98
104
[PubMed]
79.
El Helou
R.
,
Pinna
G.
,
Cabaud
O.
,
Wicinski
J.
,
Bhajun
R.
,
Guyon
L.
et al.
(
2017
)
miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling
.
Cell Rep.
18
,
2256
2268
[PubMed]
80.
Li
M.
,
Pan
M.
,
You
C.
,
Zhao
F.
,
Wu
D.
,
Guo
M.
et al.
(
2020
)
MiR-7 reduces the BCSC subset by inhibiting XIST to modulate the miR-92b/Slug/ESA axis and inhibit tumor growth
.
Breast Cancer Res.
22
,
26
[PubMed]
81.
Zhang
X.
,
Hu
Y.
,
Gong
C.
and
Zhang
C.
(
2020
)
Overexpression of miR-518b in non-small cell lung cancer serves as a biomarker and facilitates tumor cell proliferation, migration and invasion
.
Oncol. Lett.
20
,
1213
1220
[PubMed]
82.
Li
Y.
,
Zhang
H.
,
Fan
L.
,
Mou
J.
,
Yin
Y.
,
Peng
C.
et al.
(
2020
)
MiR-629-5p promotes the invasion of lung adenocarcinoma via increasing both tumor cell invasion and endothelial cell permeability
.
Oncogene
39
,
3473
3488
[PubMed]
83.
Yang
G.
,
Zhang
W.
,
Yu
C.
,
Ren
J.
and
An
Z.
(
2015
)
MicroRNA let-7: Regulation, single nucleotide polymorphism, and therapy in lung cancer
.
J. Cancer Res. Ther.
11
,
C1
C6
[PubMed]
84.
Liu
C.
,
Hu
W.
,
Li
L.L.
,
Wang
Y.X.
,
Zhou
Q.
,
Zhang
F.
et al.
(
2018
)
Roles of miR-200 family members in lung cancer: more than tumor suppressors
.
Future Oncol.
14
,
2875
2886
[PubMed]
85.
Hong
H.
,
Yao
S.
,
Zhang
Y.
,
Ye
Y.
,
Li
C.
,
Hu
L.
et al.
(
2020
)
In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor
.
PLoS Genet.
16
,
e1009168
[PubMed]
86.
Kobayashi
M.
,
Salomon
C.
,
Tapia
J.
,
Illanes
S.E.
,
Mitchell
M.D.
and
Rice
G.E.
(
2014
)
Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200
.
J. Transl. Med.
12
,
4
[PubMed]
87.
Zhu
H.
,
Yang
S.Y.
,
Wang
J.
,
Wang
L.
and
Han
S.Y.
(
2016
)
Evidence for miR-17-92 and miR-134 gene cluster regulation of ovarian cancer drug resistance
.
Eur. Rev. Med. Pharmacol. Sci.
20
,
2526
2531
[PubMed]
88.
Xiang
G.
and
Cheng
Y.
(
2018
)
MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2
.
Reprod. Biol.
18
,
218
224
[PubMed]
89.
Li
J.Z.
,
Li
J.
,
Wang
H.Q.
,
Li
X.
,
Wen
B.
and
Wang
Y.J.
(
2017
)
MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression
.
Biochem. Biophys. Res. Commun.
482
,
1381
1386
[PubMed]
90.
Ozen
M.
,
Karatas
O.F.
,
Gulluoglu
S.
,
Bayrak
O.F.
,
Sevli
S.
,
Guzel
E.
et al.
(
2015
)
Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression
.
Cancer Invest.
33
,
251
258
[PubMed]
91.
Cheng
C.Y.
,
Hwang
C.I.
,
Corney
D.C.
,
Flesken-Nikitin
A.
,
Jiang
L.
,
Oner
G.M.
et al.
(
2014
)
miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment
.
Cell Rep.
6
,
1000
1007
[PubMed]
92.
Ren
B.
,
Yang
B.
,
Li
P.
and
Ge
L.
(
2020
)
Upregulation of MiR-1274a is correlated with survival outcomes and promotes cell proliferation, migration, and invasion of colon cancer
.
Onco Targets Ther.
13
,
6957
6966
[PubMed]
93.
Fu
Q.
,
Du
Y.
,
Yang
C.
,
Zhang
D.
,
Zhang
N.
,
Liu
X.
et al.
(
2016
)
An oncogenic role of miR-592 in tumorigenesis of human colorectal cancer by targeting Forkhead Box O3A (FoxO3A)
.
Expert Opin. Ther. Targets
20
,
771
782
[PubMed]
94.
Ding
X.
,
Zhang
J.
,
Feng
Z.
,
Tang
Q.
and
Zhou
X.
(
2020
)
MiR-137-3p inhibits colorectal cancer cell migration by regulating a KDM1A-dependent epithelial-mesenchymal transition
.
Dig. Dis. Sci.
[PubMed]
95.
Cong
J.
,
Gong
J.
,
Yang
C.
,
Xia
Z.
and
Zhang
H.
(
2020
)
miR-22 suppresses tumor invasion and metastasis in colorectal cancer by targeting NLRP3
.
Cancer Manag. Res.
12
,
5419
5429
[PubMed]
96.
Chang
S.
,
Sun
G.
,
Zhang
D.
,
Li
Q.
and
Qian
H.
(
2020
)
MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4
.
Cell Death Dis.
11
,
592
[PubMed]
97.
Wang
Y.
,
Chen
R.
,
Zhou
X.
,
Guo
R.
,
Yin
J.
,
Li
Y.
et al.
(
2020
)
miR-137: A Novel Therapeutic Target for Human Glioma
.
Mol. Ther. Nucleic Acids
21
,
614
622
[PubMed]
98.
Huo
L.
,
Wang
B.
,
Zheng
M.
,
Zhang
Y.
,
Xu
J.
,
Yang
G.
et al.
(
2019
)
miR-128-3p inhibits glioma cell proliferation and differentiation by targeting NPTX1 through IRS-1/PI3K/AKT signaling pathway
.
Exp. Ther. Med.
17
,
2921
2930
[PubMed]
99.
Yang
Y.
,
Wu
J.
,
Guan
H.
,
Cai
J.
,
Fang
L.
,
Li
J.
et al.
(
2012
)
MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2
.
FEBS Lett.
586
,
3608
3612
[PubMed]
100.
Nwaeburu
C.C.
,
Abukiwan
A.
,
Zhao
Z.
and
Herr
I.
(
2017
)
Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer
.
Mol. Cancer
16
,
23
[PubMed]
101.
Yao
R.
,
Xu
L.
,
Wei
B.
,
Qian
Z.
,
Wang
J.
,
Hui
H.
et al.
(
2019
)
miR-142-5p regulates pancreatic cancer cell proliferation and apoptosis by regulation of RAP1A
.
Pathol. Res. Pract.
215
,
152416
[PubMed]
102.
Choi
J.Y.
,
Shin
H.J.
and
Bae
I.H.
(
2018
)
miR-93-5p suppresses cellular senescence by directly targeting Bcl-w and p21
.
Biochem. Biophys. Res. Commun.
505
,
1134
1140
[PubMed]
103.
Gao
Y.
,
Zhang
S.G.
,
Wang
Z.H.
and
Liao
J.C.
(
2017
)
Down-regulation of miR-342-3p in hepatocellular carcinoma tissues and its prognostic significance
.
Eur. Rev. Med. Pharmacol. Sci.
21
,
2098
2102
[PubMed]
104.
Liu
L.
,
Zhang
W.
,
Hu
Y.
,
Ma
L.
and
Xu
X.
(
2020
)
Downregulation of miR-1225-5p is pivotal for proliferation, invasion, and migration of HCC cells through NFκB regulation
.
J. Clin. Lab. Anal.
34
,
e23474
[PubMed]
105.
Zhang
X.
,
Jiang
P.
,
Shuai
L.
,
Chen
K.
,
Li
Z.
,
Zhang
Y.
et al.
(
2016
)
miR-589-5p inhibits MAP3K8 and suppresses CD90(+) cancer stem cells in hepatocellular carcinoma
.
J. Exp. Clin. Cancer Res.
35
,
176
[PubMed]
106.
Cao
F.Y.
,
Zheng
Y.B.
,
Yang
C.
,
Huang
S.Y.
,
He
X.B.
and
Tong
S.L.
(
2020
)
miR-635 targets KIFC1 to inhibit the progression of gastric cancer
.
J. Invest. Med.
68
,
1357
1363
[PubMed]
107.
Zhao
H.
,
Zheng
Y.
,
You
J.
,
Xiong
J.
,
Ying
S.
,
Xie
L.
et al.
(
2020
)
Tumor suppressor role of miR-876-5p in gastric cancer
.
Oncol. Lett.
20
,
1281
1287
[PubMed]
108.
Lovat
F.
,
Nigita
G.
,
Distefano
R.
,
Nakamura
T.
,
Gasparini
P.
,
Tomasello
L.
et al.
(
2020
)
Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia
.
Proc. Natl. Acad. Sci. U.S.A.
117
,
12332
12340
[PubMed]
109.
Khalaj
M.
,
Woolthuis
C.M.
,
Hu
W.
,
Durham
B.H.
,
Chu
S.H.
,
Qamar
S.
et al.
(
2017
)
miR-99 regulates normal and malignant hematopoietic stem cell self-renewal
.
J. Exp. Med.
214
,
2453
2470
[PubMed]
110.
Lin
H.
,
Rothe
K.
,
Chen
M.
,
Wu
A.
,
Babaian
A.
,
Yen
R.
et al.
(
2020
)
The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML
.
Blood
136
,
596
609
[PubMed]
111.
Su
Y.L.
,
Wang
X.
,
Mann
M.
,
Adamus
T.P.
,
Wang
D.
,
Moreira
D.F.
et al.
(
2020
)
Myeloid cell-targeted miR-146a mimic inhibits NF-kappaB-driven inflammation and leukemia progression in vivo
.
Blood
135
,
167
180
[PubMed]
112.
Li
Z.
,
Jin
C.
,
Chen
S.
,
Zheng
Y.
,
Huang
Y.
,
Jia
L.
et al.
(
2017
)
Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p
.
Mol. Cell. Biochem.
113.
Zong
Y.
,
Zhang
Y.
,
Hou
D.
,
Xu
J.
,
Cui
F.
,
Qin
Y.
et al.
(
2020
)
The lncRNA XIST promotes the progression of breast cancer by sponging miR-125b-5p to modulate NLRC5
.
Am. J. Transl. Res.
12
,
3501
3511
[PubMed]
114.
Shima
H.
,
Kida
K.
,
Adachi
S.
,
Yamada
A.
,
Sugae
S.
,
Narui
K.
et al.
(
2018
)
Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness
.
Breast Cancer Res. Treat.
170
,
507
516
[PubMed]
115.
Zhou
Q.
,
Guo
J.
,
Huang
W.
,
Yu
X.
,
Xu
C.
and
Long
X.
(
2020
)
Linc-ROR promotes the progression of breast cancer and decreases the sensitivity to rapamycin through miR-194-3p targeting MECP2
.
Mol. Oncol.
14
,
2231
2250
[PubMed]
116.
Wang
Y.
,
Gong
G.
,
Xu
J.
,
Zhang
Y.
,
Wu
S.
and
Wang
S.
(
2020
)
Long noncoding RNA HOTAIR promotes breast cancer development by targeting ZEB1 via sponging miR-601
.
Cancer Cell Int.
20
,
320
[PubMed]
117.
Chang
K.C.
,
Diermeier
S.D.
,
Yu
A.T.
,
Brine
L.D.
,
Russo
S.
,
Bhatia
S.
et al.
(
2020
)
MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression
.
Nat. Commun.
11
,
6438
[PubMed]
118.
Shi
Q.
,
Li
Y.
,
Li
S.
,
Jin
L.
,
Lai
H.
,
Wu
Y.
et al.
(
2020
)
LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer
.
Nat. Commun.
11
,
5513
[PubMed]
119.
Fang
Z.
,
Wang
Y.
,
Wang
Z.
,
Xu
M.
,
Ren
S.
,
Yang
D.
et al.
(
2020
)
ERINA is an estrogen-responsive LncRNA that drives breast cancer through the E2F1/RB1 pathway
.
Cancer Res.
80
,
4399
4413
[PubMed]
120.
Jin
X.
,
Xu
X.E.
,
Jiang
Y.Z.
,
Liu
Y.R.
,
Sun
W.
,
Guo
Y.J.
et al.
(
2019
)
The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation
.
Sci. Adv.
5
,
eaat9820
[PubMed]
121.
Zagorac
S.
,
de Giorgio
A.
,
Dabrowska
A.
,
Kalisz
M.
,
Casas-Vila
N.
,
Cathcart
P.
et al.
(
2020
)
SCIRT lncRNA restrains tumorigenesis by opposing transcriptional programs of tumor-initiating cells
.
Cancer Res.
81
,
580
593
[PubMed]
122.
Cho
S.W.
,
Xu
J.
,
Sun
R.
,
Mumbach
M.R.
,
Carter
A.C.
,
Chen
Y.G.
et al.
(
2018
)
Promoter of lncRNA gene PVT1 Is a tumor-suppressor DNA boundary element
.
Cell
173
,
1398.e22
1412.e22
123.
Zhang
Y.
,
Guo
J.
,
Cai
E.
,
Cai
J.
,
Wen
Y.
,
Lu
S.
et al.
(
2020
)
HOTAIR maintains the stemness of ovarian cancer stem cells via the miR-206/TBX3 axis
.
Exp. Cell. Res.
395
,
112218
[PubMed]
124.
Li
Y.
,
Hou
C.Z.
,
Dong
Y.L.
,
Zhu
L.
and
Xu
H.
(
2020
)
Long noncoding RNA LINP1 promoted proliferation and invasion of ovarian cancer via inhibiting KLF6
.
Eur. Rev. Med. Pharmacol. Sci.
24
,
7918
[PubMed]
125.
Wang
J.
,
Gu
J.
,
You
A.
,
Li
J.
,
Zhang
Y.
,
Rao
G.
et al.
(
2020
)
The transcription factor USF1 promotes glioma cell invasion and migration by activating lncRNA HAS2-AS1
.
Biosci. Rep.
40
,
[PubMed]
126.
Liu
Z.Z.
,
Tian
Y.F.
,
Wu
H.
,
Ouyang
S.Y.
and
Kuang
W.L.
(
2020
)
LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1alpha/VEGF axis
.
Neoplasma
67
,
111
118
[PubMed]
127.
Li
D.X.
,
Fei
X.R.
,
Dong
Y.F.
,
Cheng
C.D.
,
Yang
Y.
,
Deng
X.F.
et al.
(
2017
)
The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2
.
Oncotarget
8
,
88163
88178
[PubMed]
128.
Shen
J.
,
Xiong
J.
,
Shao
X.
,
Cheng
H.
,
Fang
X.
,
Sun
Y.
et al.
(
2020
)
Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p
.
J. Cancer
11
,
4550
4559
[PubMed]
129.
Feng
S.
,
Yao
J.
,
Chen
Y.
,
Geng
P.
,
Zhang
H.
,
Ma
X.
et al.
(
2015
)
Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in glioma
.
J. Mol. Neurosci.
56
,
623
630
[PubMed]
130.
Gong
X.
and
Zhu
Z.
(
2020
)
Long noncoding RNA HOTAIR contributes to progression in hepatocellular carcinoma by sponging miR-217-5p
.
Cancer Biother. Radiopharm.
35
,
387
396
[PubMed]
131.
Zhu
P.
,
Wang
Y.
,
Huang
G.
,
Ye
B.
,
Liu
B.
,
Wu
J.
et al.
(
2016
)
lnc-beta-Catm elicits EZH2-dependent beta-catenin stabilization and sustains liver CSC self-renewal
.
Nat. Struct. Mol. Biol.
23
,
631
639
[PubMed]
132.
Sun
X.
,
Qian
Y.
,
Wang
X.
,
Cao
R.
,
Zhang
J.
,
Chen
W.
et al.
(
2020
)
LncRNA TRG-AS1 stimulates hepatocellular carcinoma progression by sponging miR-4500 to modulate BACH1
.
Cancer Cell Int.
20
,
367
[PubMed]
133.
Liu
N.
,
Liu
Q.
,
Yang
X.
,
Zhang
F.
,
Li
X.
,
Ma
Y.
et al.
(
2018
)
Hepatitis B virus-upregulated LNC-HUR1 promotes cell proliferation and tumorigenesis by blocking p53 activity
.
Hepatology
68
,
2130
2144
[PubMed]
134.
Li
Z.
,
Zhang
J.
,
Liu
X.
,
Li
S.
,
Wang
Q.
,
Di
C.
et al.
(
2018
)
The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma
.
Nat. Commun.
9
,
1572
[PubMed]
135.
Malakar
P.
,
Shilo
A.
,
Mogilevsky
A.
,
Stein
I.
,
Pikarsky
E.
,
Nevo
Y.
et al.
(
2017
)
Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation
.
Cancer Res.
77
,
1155
1167
[PubMed]
136.
Wang
X.
,
Sun
W.
,
Shen
W.
,
Xia
M.
,
Chen
C.
,
Xiang
D.
et al.
(
2016
)
Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis
.
J. Hepatol.
64
,
1283
1294
[PubMed]
137.
Qian
Y.Y.
,
Li
K.
,
Liu
Q.Y.
and
Liu
Z.S.
(
2017
)
Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma
.
Oncotarget
8
,
107859
107869
[PubMed]
138.
Xu
F.
,
Li
C.H.
,
Wong
C.H.
,
Chen
G.G.
,
Lai
P.B.S.
,
Shao
S.
et al.
(
2019
)
Genome-Wide screening and functional analysis identifies tumor suppressor long noncoding RNAs epigenetically silenced in hepatocellular carcinoma
.
Cancer Res.
79
,
1305
1317
[PubMed]
139.
Gu
Z.G.
,
Shen
G.H.
,
Lang
J.H.
,
Huang
W.X.
,
Qian
Z.H.
and
Qiu
J.
(
2020
)
Effects of long non-coding RNA URHC on proliferation, apoptosis and invasion of colorectal cancer cells
.
Eur. Rev. Med. Pharmacol. Sci.
24
,
7910
[PubMed]
140.
Chen
B.
,
Dragomir
M.P.
,
Fabris
L.
,
Bayraktar
R.
,
Knutsen
E.
,
Liu
X.
et al.
(
2020
)
The long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB signaling
.
Gastroenterology
159
,
2146.e33
2162.e33
141.
Li
X.L.
,
Subramanian
M.
,
Jones
M.F.
,
Chaudhary
R.
,
Singh
D.K.
,
Zong
X.
et al.
(
2017
)
Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer
.
Cell Rep.
20
,
2408
2423
[PubMed]
142.
Zhou
B.
,
Yi
F.
,
Chen
Y.
,
Li
C.H.
,
Cheng
Y.S.
and
Yang
K.
(
2020
)
Reduced long noncoding RNA PGM5-AS1 facilitated proliferation and invasion of colorectal cancer through sponging miR-100-5p
.
Eur. Rev. Med. Pharmacol. Sci.
24
,
7972
7981
[PubMed]
143.
Sun
Z.Q.
,
Chen
C.
,
Zhou
Q.B.
,
Liu
J.B.
,
Yang
S.X.
,
Li
Z.
et al.
(
2017
)
Long non-coding RNA LINC00959 predicts colorectal cancer patient prognosis and inhibits tumor progression
.
Oncotarget
8
,
97052
97060
[PubMed]
144.
Su
W.
,
Feng
S.
,
Chen
X.
,
Yang
X.
,
Mao
R.
,
Guo
C.
et al.
(
2018
)
Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer
.
Cancer Res.
78
,
3207
3219
[PubMed]
145.
Hu
W.L.
,
Jin
L.
,
Xu
A.
,
Wang
Y.F.
,
Thorne
R.F.
,
Zhang
X.D.
et al.
(
2018
)
GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability
.
Nat. Cell Biol.
20
,
492
502
[PubMed]
146.
Shahabi
S.
,
Kumaran
V.
,
Castillo
J.
,
Cong
Z.
,
Nandagopal
G.
,
Mullen
D.J.
et al.
(
2019
)
LINC00261 is an epigenetically regulated tumor suppressor essential for activation of the DNA damage response
.
Cancer Res.
79
,
3050
3062
[PubMed]
147.
David
A.
,
Zocchi
S.
,
Talbot
A.
,
Choisy
C.
,
Ohnona
A.
,
Lion
J.
et al.
(
2020
)
The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling
.
Leukemia
,
[PubMed]
148.
Wang
Y.
,
Zhang
M.
,
Xu
H.
,
Wang
Y.
,
Li
Z.
,
Chang
Y.
et al.
(
2017
)
Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway
.
Oncotarget
8
,
72182
72196
[PubMed]
149.
Wang
Y.
,
Li
J.
,
Du
C.
,
Zhang
L.
,
Zhang
Y.
,
Zhang
J.
et al.
(
2019
)
Upregulated circular RNA circ-UBE2D2 predicts poor prognosis and promotes breast cancer progression by sponging miR-1236 and miR-1287
.
Transl. Oncol.
12
,
1305
1313
[PubMed]
150.
Ye
G.
,
Pan
R.
,
Zhu
L.
and
Zhou
D.
(
2020
)
Circ_DCAF6 potentiates cell stemness and growth in breast cancer through GLI1-Hedgehog pathway
.
Exp. Mol. Pathol.
116
,
104492
[PubMed]
151.
Du
W.W.
,
Yang
W.
,
Li
X.
,
Awan
F.M.
,
Yang
Z.
,
Fang
L.
et al.
(
2018
)
A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy
.
Oncogene
37
,
5829
5842
[PubMed]
152.
Mao
Y.
,
Lv
M.
,
Cao
W.
,
Liu
X.
,
Cui
J.
,
Wang
Y.
et al.
(
2020
)
Circular RNA 000554 represses epithelial-mesenchymal transition in breast cancer by regulating microRNA-182/ZFP36 axis
.
FASEB J.
34
,
11405
11420
,
[PubMed]
153.
Hu
Y.
,
Guo
F.
,
Zhu
H.
,
Tan
X.
,
Zhu
X.
,
Liu
X.
et al.
(
2020
)
Circular RNA-0001283 suppresses breast cancer proliferation and invasion via MiR-187/HIPK3 axis
.
Med. Sci. Monit.
26
,
e921502
[PubMed]
154.
Xiong
S.
,
Li
D.
,
Wang
D.
,
Huang
L.
,
Liang
G.
,
Wu
Z.
et al.
(
2020
)
Circular RNA MYLK promotes glycolysis and proliferation of non-small cell lung cancer cells by sponging miR-195-5p and increasing glucose transporter member 3 expression
.
Cancer Manag. Res.
12
,
5469
5478
[PubMed]
155.
Fu
Y.
,
Su
L.
,
Cai
M.
,
Yao
B.
,
Xiao
S.
,
He
Q.
et al.
(
2019
)
Downregulation of CPA4 inhibits non small-cell lung cancer growth by suppressing the AKT/c-MYC pathway
.
Mol. Carcinog.
58
,
2026
2039
[PubMed]
156.
Xue
M.
,
Hong
W.
,
Jiang
J.
,
Zhao
F.
and
Gao
X.
(
2020
)
Circular RNA circ-LDLRAD3 serves as an oncogene to promote non-small cell lung cancer progression by upregulating SLC1A5 through sponging miR-137
.
RNA Biol.
17
,
1811
1822
[PubMed]
157.
Dai
J.
,
Zhuang
Y.
,
Tang
M.
,
Qian
Q.
and
Chen
J.P.
(
2020
)
CircRNA UBAP2 facilitates the progression of colorectal cancer by regulating miR-199a/VEGFA pathway
.
Eur. Rev. Med. Pharmacol. Sci.
24
,
7963
7971
[PubMed]
158.
Yang
Y.
,
Zhang
Y.
,
Chen
B.
,
Ding
L.
,
Mu
Z.
and
Li
Y.
(
2019
)
Elevation of circular RNA circ-POSTN facilitates cell growth and invasion by sponging miR-1205 in glioma
.
J. Cell. Biochem.
120
,
16567
16574
[PubMed]
159.
Zhang
M.
,
Huang
N.
,
Yang
X.
,
Luo
J.
,
Yan
S.
,
Xiao
F.
et al.
(
2018
)
A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis
.
Oncogene
37
,
1805
1814
[PubMed]
160.
Zang
H.
,
Li
Y.
,
Zhang
X.
and
Huang
G.
(
2020
)
Circ_0000517 contributes to hepatocellular carcinoma progression by upregulating TXNDC5 via sponging miR-1296-5p
.
Cancer Manag. Res.
12
,
3457
3468
[PubMed]
161.
Zhu
Q.
,
Lu
G.
,
Luo
Z.
,
Gui
F.
,
Wu
J.
,
Zhang
D.
et al.
(
2018
)
CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/beta-catenin axis
.
Biochem. Biophys. Res. Commun.
497
,
626
632
[PubMed]
162.
Hu
Z.Q.
,
Zhou
S.L.
,
Li
J.
,
Zhou
Z.J.
,
Wang
P.C.
,
Xin
H.Y.
et al.
(
2020
)
Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis
.
Hepatology
72
,
906
922
[PubMed]
163.
Wei
Y.
,
Chen
X.
,
Liang
C.
,
Ling
Y.
,
Yang
X.
,
Ye
X.
et al.
(
2020
)
A noncoding regulatory RNAs network driven by Circ-CDYL acts specifically in the early stages hepatocellular carcinoma
.
Hepatology
71
,
130
147
[PubMed]
164.
Meng
J.
,
Chen
S.
,
Han
J.X.
,
Qian
B.
,
Wang
X.R.
,
Zhong
W.L.
et al.
(
2018
)
Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma
.
Cancer Res.
78
,
4150
4162
[PubMed]
165.
Mi
L.
,
Lei
L.
,
Yin
X.
,
Li
N.
,
Shi
J.
,
Han
X.
et al.
(
2020
)
Circ_0000144 functions as a miR-623 sponge to enhance gastric cancer progression via up-regulating GPRC5A
.
Biosci. Rep.
40
,,
[PubMed]
166.
Liu
Y.
,
Jiang
Y.
,
Xu
L.
,
Qu
C.
,
Zhang
L.
,
Xiao
X.
et al.
(
2020
)
circ-NRIP1 promotes glycolysis and tumor progression by regulating miR-186-5p/MYH9 axis in gastric cancer
.
Cancer Manag. Res.
12
,
5945
5956
[PubMed]
167.
Zhou
J.
,
Dong
Z.N.
,
Qiu
B.Q.
,
Hu
M.
,
Liang
X.Q.
,
Dai
X.
et al.
(
2020
)
CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis
.
Aging (Albany N.Y.)
12
,
14080
14091
[PubMed]
168.
Xu
Q.
,
Deng
B.
,
Li
M.
,
Chen
Y.
and
Zhuan
L.
(
2020
)
circRNA-UBAP2 promotes the proliferation and inhibits apoptosis of ovarian cancer though miR-382-5p/PRPF8 axis
.
J. Ovarian Res.
13
,
81
[PubMed]
169.
Gong
J.
,
Xu
X.
,
Zhang
X.
and
Zhou
Y.
(
2020
)
Circular RNA-9119 suppresses in ovarian cancer cell viability via targeting the microRNA-21-5p-PTEN-Akt pathway
.
Aging (Albany N.Y.)
12
,
14314
14328
[PubMed]
170.
Lin
C.
,
Xu
X.
,
Yang
Q.
,
Liang
L.
and
Qiao
S.
(
2020
)
Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a
.
Cancer Cell Int.
20
,
336
[PubMed]
171.
Wang
N.
,
Cao
Q.X.
,
Tian
J.
,
Ren
L.
,
Cheng
H.L.
and
Yang
S.Q.
(
2020
)
Circular RNA MTO1 inhibits the proliferation and invasion of ovarian cancer cells through the miR-182-5p/KLF15 axis
.
Cell Transplant.
29
,
963689720943613
[PubMed]
This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).