Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-1 of 1
Jan-Hendrik S. Hofmeyr
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Essays in Biochemistry
Essays Biochem (2008) 45: 57–66.
Published: 30 September 2008
Abstract
The living cell is a complex system of interacting processes. The properties of the agents that facilitate these processes, such as enzymes, transporters and receptors, must be tuned to each other if the system is to behave harmoniously. The present chapter describes how the regulatory design of cellular subsystems that makes this harmonious behaviour possible can be visualized on a graph that combines the so-called log–log rate characteristics of these subsystems. The tools that are needed to create and analyse these graphs are metabolic control analysis, supply-demand analysis, enzyme kinetics and computer simulation.