Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-3 of 3
Keywords: auxin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Essays in Biochemistry
Essays Biochem (2015) 58: 1–12.
Published: 15 September 2015
...Thomas Guilfoyle; Gretchen Hagen; Gretchen Hagen The plant hormone auxin (indole-3-acetic acid, IAA) controls growth and developmental responses throughout the life of a plant. A combination of molecular, genetic and biochemical approaches has identified several key components involved in auxin...
Abstract
The plant hormone auxin (indole-3-acetic acid, IAA) controls growth and developmental responses throughout the life of a plant. A combination of molecular, genetic and biochemical approaches has identified several key components involved in auxin signal transduction. Rapid auxin responses in the nucleus include transcriptional activation of auxin-regulated genes and degradation of transcriptional repressor proteins. The nuclear auxin receptor is an integral component of the protein degradation machinery. Although auxin signalling in the nucleus appears to be short and simple, recent studies indicate that there is a high degree of diversity and complexity, largely due to the existence of multigene families for each of the major molecular components. Current studies are attempting to identify interacting partners among these families, and to define the molecular mechanisms involved in the interactions. Future goals are to determine the levels of regulation of the key components of the transcriptional complex, to identify higher-order complexes and to integrate this pathway with other auxin signal transduction pathways, such as the pathway that is activated by auxin binding to a different receptor at the outer surface of the plasma membrane. In this case, auxin binding triggers a signal cascade that affects a number of rapid cytoplasmic responses. Details of this pathway are currently under investigation.
Articles
Journal:
Essays in Biochemistry
Essays Biochem (2015) 58: 71–82.
Published: 15 September 2015
... addressed (email zywang24@stanford.edu ). © 2015 Authors; published by Portland Press Limited 2015 auxin brassinosteroids cross-talk gibberelic acid phytochrome phytohormones signal integration signal transduction Hormones are small mobile molecules that can induce profound cellular...
Abstract
Steroid hormones are key regulators of growth and physiology in both plants and animals. The plant steroid hormones known as brassinosteroids (BRs) are essential for a wide range of developmental processes throughout the life cycle. In contrast with animal steroid hormones, which act mostly through nuclear receptors, BRs act through a cell-surface receptor kinase. The BR signal transduction pathway from the cell-surface receptor to nuclear gene expression has been elucidated in great molecular detail, and thus serves as a paradigm for receptor kinase signalling in plants. Furthermore, several mechanisms of signal integration have been identified that explain how BRs and other hormonal and environmental signals co-regulate specific developmental outputs in a synergistic or antagonistic manner.
Articles
Journal:
Essays in Biochemistry
Essays Biochem (2015) 58: 165–181.
Published: 15 September 2015
... receptors, which control the responses to auxin, jasmonates, gibberellins, strigolactones and salicylic acid, signal either directly or indirectly via the destruction of regulatory proteins. Responses to abscisic acid are primarily mediated by soluble receptors that indirectly regulate the phosphorylation...
Abstract
Plant growth and development are controlled by nine structurally distinct small molecules termed phytohormones. Over the last 20 years, the molecular basis of their signal transduction, from receptors to transcription factors, has been dissected using mainly Arabidopsis thaliana and rice as model systems. Phytohormones can be broadly classified into two distinct groups on the basis of whether the subcellular localization of their receptors is in the cytoplasm or nucleus, and hence soluble, or membrane-bound, and hence insoluble. Soluble receptors, which control the responses to auxin, jasmonates, gibberellins, strigolactones and salicylic acid, signal either directly or indirectly via the destruction of regulatory proteins. Responses to abscisic acid are primarily mediated by soluble receptors that indirectly regulate the phosphorylation of targeted proteins. Insoluble receptors, which control the responses to cytokinins, brassinosteroids and ethylene, transduce their signal through protein phosphorylation. This chapter provides a comparison of the different components of these signalling systems, and discusses the similarities and differences between them.