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Stress exposure is associated with psychiatric conditions, such as depression, anx-
iety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to
developing or reinstating substance use disorder. Stress causes several changes in
the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and
diseases. Changes in several transmitters, including serotonin, dopamine, glutamate,
gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psy-
chiatric disorders or behavioral alterations in preclinical studies. Complex and interacting
mechanisms make it very difficult to understand the physiopathology of psychiatry condi-
tions; therefore, studying regulatory mechanisms that impact these alterations is a good
approach. In the last decades, the impact of stress on biology through epigenetic markers,
which directly impact gene expression, is under intense investigation; these mechanisms are
associated with behavioral alterations in animal models after stress or drug exposure, for
example. The endocannabinoid (eCB) system modulates stress response, reward circuits,
and other physiological functions, including hypothalamus–pituitary–adrenal axis activation
and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting
the release of neurotransmitters, a mechanism implicated in the antidepressant and anxi-
olytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system
molecules, which in turn can regulate epigenetic mechanisms. This review will present evi-
dence of how the eCB system and epigenetic mechanisms interact and the consequences
of this interaction in modulating behavioral changes after stress exposure in preclinical stud-
ies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB
system and epigenetic mechanisms in drug abuse contexts will be discussed.

Overview of stress response and circuitry
Stress is an important and evolutionarily conserved response that modulates several central nervous sys-
tem (CNS) regions and the endocrine system to prepare the organism to face a challenging experience.
The stressors, stimuli that trigger the stress response, can be chemical, physical, psychological, or com-
binations of these; and they can recruit different brain regions, which could overlap depending on the
circumstances [1]. In general, stress exposure activates the hypothalamus–pituitary–adrenal (HPA) axis,
leading to release of glucocorticoids (GCs) by the adrenal gland. GCs promote their stress effects mostly by
activating glucocorticoid receptors (GR) in the periphery and in the brain, altering the expression of sev-
eral genes to promote adaptation [2,3]. A simplified view of key brain regions involved in stress response is
depicted in Figure 1. However, as reviewing this topic is beyond the scope of this study, the reader can find
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Figure 1. A simplified view of the key brain regions involved in the stress response

The amygdala (basolateral-BLA and central-CeA nuclei) is a key region in initiating the stress response. It is an input region for

projections sent by other regions, particularly by different subdivisions of the medial prefrontal cortex (mPFC). Specifically, the

prelimbic region (PL) of the mPFC exerts excitatory influence on amygdala. In contrast, the infralimbic region (IL) inhibits the baso-

lateral amygdala (BLA). The hippocampus (HIP) contributes to stress response by providing contextual information, with excitatory

projections to the PL-mPFC and BLA. The BLA, in turn, inhibits the PL, IL, and has both inhibitory and excitatory projections to

the HIP. The balance of these two projections controls the parallel HIP outputs. Integrating this information, the BLA activates the

amygdala’s output region, the CeA, which sends excitatory projections to the hypothalamus (HYP), stimulating the production and

release of corticotropin-releasing hormone (CRH). CRH acts on the pituitary gland triggering the synthesis and release of adreno-

corticotropic hormone (ACTH). ACTH, in turn, is released in the blood and stimulates the synthesis of glucocorticoids (GCs) in

the adrenal gland. Finally, released GCs establish a negative feedback loop within the hypothalamus and pituitary, modulating the

peripheral and central nervous system areas to facilitate adaptive responses to stress. Depending on the duration and type of stres-

sors, increased amygdala activity, cortical dysfunction and hippocampal atrophy can occur, impairing the ability of this adaptive

response to occur, contributing to psychiatric disorders.

more comprehensive reviews about this topic, with figures summarizing the current knowledge, in several recent
review studies [1,4–7]. Here, we will present some critical information about the central regions affected by stress,
that influence behavioral response: the prefrontal cortex, amygdala, and hippocampus.

The prefrontal cortex (PFC) is responsible for complex functions such as integrating and processing different stim-
uli for decision-making, goal-directed behaviors, and working memory [8,9], in addition to emotional processing. The
medial portion of the PFC (mPFC), the most studied in studies related to aversion and stress [10], is mainly divided
into the prelimbic (PL) and the infralimbic (IL) portions, which can have distinct or opposite functions [11,12] due
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to their partially distinct connections and projections [13,14]. In general terms, the PFC is greatly activated during
acute stress, and the excess of glutamate release and its impaired reuptake mediated by GCs may result in neurotoxi-
city [15], proinflammatory factors release, and neuronal death [16,17]. These changes can be related to the neuronal
atrophy observed in the PFC of depressed and PTSD patients and animal models involving stress exposure [18,19]
which could result in weakened PFC projections to the amygdala and hippocampus, impairing modulatory function
exerted by PFC on these brain regions [20,21].

The amygdala is also an essential structure for emotional processing [5] and is divided into different nuclei. The
basolateral nucleus (BLA) integrates and processes aversive/stressful stimuli received by several brain regions, being
greatly activated during stressful events [5] and fear memory conditioning acquisition and consolidation [22,23].
BLA sends several outputs to the central nucleus (CeA) and the medial nucleus (MeA), which in turn project to other
brain areas that will be responsible for triggering adaptative behaviors to facing stress [5]. As mentioned before, the
amygdala receives inhibitory projections from the IL mPFC, which can be weakened after stressful situations, resulting
in a lack of inhibition of BLA by the PFC and hyperactivation of the amygdala [24,25]. For instance, depressed and
PTSD patients have bigger and more active amygdala than healthy volunteers [26–28].

Finally, the hippocampus, which is connected to the amygdala and PFC [29], comprises the dentate gyrus (DG)
and Ammon’s horn/Cornus Ammonics (CA) subfields 1, 2, and 3. The CA1 region has outputs to several regions,
including the PL and IL mPFC and BLA [30–32]. The hippocampus plays an important role in memory acquisition
and discrimination of aversive contexts [33,34]. It also inhibits excessive activation of the HPA axis during stress
response [35]. However, stress exposure can cause hippocampus atrophy and decreases neuronal plasticity, impairing
its function and resulting, for example, in fear extinction learning deficits and fear generalization [33,36], anxiety-like
and depressive-like behaviors [37]. Moreover, decreased hippocampal volume is reported in anxiety disorders, PTSD,
and depression in humans [38–41]. Interestingly, based on a monozygotic twins study, it was suggested that a smaller
hippocampal volume could be a risk factor for developing PTSD after traumatic events rather than a consequence of
PTSD [42].

Although many other brain areas can be involved, it is well-known that a proper synchronization between the
amygdala, mPFC, and hippocampus is necessary for adequate stress response and fear processing mechanisms. There-
fore, impairment in this circuitry is frequently observed in psychiatric disorders. This poor connectivity can be as-
sociated with impaired molecular mechanisms in those brain regions, including dysfunctional neurotransmitter sys-
tems, such as endocannabinoids, and epigenetic modifications, which could control neuroplastic changes resulting
in long-lasting consequences, such as impaired behavior.

The (endo)cannabinoid signaling in stress response
The endocannabinoid (eCB) system, activated by stress exposure, is considered a stress-buffer system and essen-
tial for several physiological conditions. The main eCBs are anandamide (AEA) and 2-arachidonoylglycerol (2-AG),
which are produced on demand post-synaptically in response to an increase in neuronal activity, by actions of N-acyl
phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL) on membrane
phospholipids, respectively. These eCBs are released in the synaptic cleft and act retrogradely in cannabinoid recep-
tors (CB1/2) or post-synaptically in CB2, or in glial cells. CB1/2 are Gi-coupled receptors, then their activation result
in the inhibition of adenylyl cyclase, the protein kinase A (PKA), and cellular Ca2+ influx, culminating in a blockade
in neurotransmitter release that was increased before. Finally, AEA will be degraded by the fatty acid amide hydro-
lase (FAAH) enzyme mostly in the postsynaptic neuron, whereas 2-AG will be metabolized by the monoacylglycerol
lipase (MAGL) enzyme in the presynaptic neuron [43].

Contrasting to CB1/2 receptors, the vanilloid receptor 1 (TRPV1) is expressed both pre- and post-synaptically.
TRPV1 can be activated by AEA, increasing the Ca2+ influx and neurotransmitter release. Pieces of evidence sug-
gest that AEA has its actions preferentially via CB1 receptors, whereas, at higher concentrations, the predominant
effect could reflect its effects on TRPV1. This is one of the possible explanations for the bell-shaped dose-response
curve often seen with AEA in behavioral responses [44]. It has been shown, for example, that by inhibiting CB1 recep-
tors with an antagonist, the extinction learning process is impaired [45,46], and the treatment with a TRPV1 receptor
agonist has a similar effect [47]. Moreover, the administration of a FAAH inhibitor facilitated the extinction learning
process in wild-type mice [46]. Finally, the facilitation of CB1 signaling by a drug that blocks FAAH and antagonizes
TRPV1 receptors is more potent in blocking the expression of fear conditioning than inhibiting these two targets
individually, supporting the opposite role for CB1 and TRPV1 receptors in triggering fear behavior [48].

Overall, a very reductionist description of the eCB system is described here. In the past few years, several other
targets of the eCB system were described, such as the G-protein-coupled receptor 55 (GPR55) and the peroxisome
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proliferator-activated receptorγ (PPARγ), which interact with eCBs and other substrates, promoting different effects.
A more recent detailed review of this topic can be found in [43].

The eCB system is altered in several pathological conditions, such as cancer, gastrointestinal and cardiovascular dis-
eases, eating disorders [49], and stress-related psychiatric conditions [39,40,50,51]. For instance, studies have shown
that depressed women have decreased serum levels of AEA and 2-AG [52]. Moreover, depressed suicide victims have
increased expression of CB1 receptors in the dorsolateral PFC [53]. Finally, genetic studies have shown that poly-
morphisms of the CB1 receptor have greater prevalence in depressed and anxious patients [54,55] and are correlated
with treatment-resistant depression [56]. Interestingly, pharmacological studies indicate that the administration of
rimonabant, a CB1 antagonist, increases symptoms of depression and anxiety in healthy individuals [57] and that the
effects of conventional antidepressant drugs depend on the eCB signaling [58].

In PTSD patients, reduced peripheral AEA levels and higher expression of CB1 receptors in the brain are also re-
ported [59]. Interestingly, non-PTSD individuals carrying the C385A allele of the rs324420 polymorphism, a mutation
of the FAAH gene, had increased AEA levels, enhanced fear extinction [60], and lower amygdala reactivity during
fear extinction recall [61]. Also, polymorphisms of the CB2 receptor and FAAH enzyme have been associated with
greater susceptibility to childhood trauma and the development of psychiatry disorders later in life [62,63]. Other
polymorphisms in the eCB system, including in the CB1 receptor, are associated with fear extinction and/or PTSD
[64–66].

Altogether these data suggest a strong relationship between the eCB system and psychiatry conditions. Based on
the existing evidence, impaired eCB signaling in the brain, induced by stress or as consequences of polymorphisms,
could be involved in the neurobiology of stress-related disorders, including depression and PTSD. Therefore, targeting
these changes in the eCB system is a potential tool to improve the outcome of those disorders, potentially achieving
remission in treatment-resistant patients. However, this still need further investigation. More about these discussions
can be found in excellent recently published reviews [64,67,68].

Animal model studies also corroborate the involvement of eCB signaling in the development of behavioral changes
related to psychiatric symptoms. For instance, CB1 KO mice have elevated levels of depression- and anxiety-like be-
haviors after stress [69–72]. Moreover, these mice also have impaired fear extinction, a key feature of PTSD animal
models [73]. Pharmacologically, these behavioral alterations are reproduced after chronic administration of CB1 an-
tagonists [74,75]. CB1 agonists have also been shown to have antidepressant and anxiolytic effects after stress [76–78].
Furthermore, several papers reported the participation of the eCB system, particularly CB1 receptors, promoting fear
extinction facilitation in different animal models [45,46,79,80]. CB2 participation in promoting behavioral responses
seems to be more complex. The overexpression of this receptor promoted reduced levels of anxiety-like behaviors in
the light-dark box and elevated plus maze in mice [81]. However, evidence shows that chronic administration of a CB2
antagonist produces an anxiolytic effect [82]. Another study from the same group observed that the overexpression
of CB2 receptors reduced depressive-like behaviors in mice, whereas the administration of AM630, a CB2 antagonist,
induced an antidepressant effect in wild-type mice. The drug had no effect in the transgenic line [83]. Moreover, CB2
KO mice have impaired contextual, but not cued, fear conditioning and enhanced spatial memory [84]. More stud-
ies using genetic and molecular techniques with specific cell types, such as microglia and astrocytes, are needed to
investigate the interaction of CB2 expression and activity with other signaling systems involved in mood regulation
and behavior.

Multiple mechanisms involved in the physiopathology of psychiatric conditions, like major depression, anxiety,
and PTSD, can be regulated by the eCB system. Therefore, the resultant effects from eCB system manipulation have
been related to several molecular alterations. For example, eCBs can counteract dysregulation in neurotransmitter
systems [85–87], promote neuroplasticity [88,89], and attenuate inflammatory effects [90–93] induced by stress. In
mice, both genetic deletion and the antagonism of CB1 receptors in the mPFC prolonged CORT release after stress.
It has been proposed that the activation of CB1 in mPFC GABAergic interneurons disinhibits excitatory neuronal
projections that are responsible for terminating stress response [94].

A more recent proposal regarding stress consequences implies the modulation of epigenetic mechanisms in the
brain to promote behavioral changes. This review will focus on the crosstalk between the eCB system and epigenetics
mechanisms to modulate the stress response. Considering a general knowledge about epigenetic mechanisms are
necessary to understand how they can impact the eCB system, in the next section we will give an overview about this
knowledge.
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Key epigenetic mechanisms in stress response
Epigenetics focuses on the interaction between the environment and genome, whereby gene expression is modulated
in response to new stimuli. In the short or long term after stress experiences, several epigenetic marks can be mod-
ified to adapt the organism to the environment; these marks can even be transmitted between generations. Because
of a maladaptive response, these epigenetic changes can predispose the organism to diseases. There are three major
epigenetic mechanisms for the regulation of gene expression: DNA modifications, histone modifications, and inter-
ference RNAs. Below, we will briefly describe each one of them, associating them with modifications in important
stress-related systems.

DNA methylation
The DNA is passive to chemical modifications that do not change the nucleotide sequence but regulate gene tran-
scription. Among many modifications described in the literature, cytosine methylation at the 5′ position (5mC) is
the most investigated. The DNA-methyltransferases (DNMTs) family of enzymes in mammals, comprising DNMT1,
DNMT3a, and DNMT3b, catalyzes the reaction of a methyl group addition to a cytosine [95]. The reaction occurs
mainly in CpG dinucleotides, distributed throughout the genome but more concentrated in CpG islands in promoter
regions of the genes. 5mC is recognized by methyl-CpG binding proteins (MBPs), such as methyl-CpG binding pro-
tein 2 (MeCP2), commonly related to psychiatry diseases [96,97]. 5mC is usually associated with the repression of gene
expression, but it also can promote gene expression activation depending on the location of the CpG island in the gene
body [98]. Despite some stability, DNA methylation is a dynamic process constantly subject to reversal (demethyla-
tion) by active and passive forms. The passive form occurs through DNA damage or replication, while the active form
is a process based on methyl-cytosine modifications through the ten–eleven translocation (TET) enzyme family and
the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme complex (AID/APOBEC) [98].

Both DNA hyper- and hypomethylation of stress-related genes are found in various neuropsychiatric and neuro-
logical diseases [99–102]. Most clinical studies focus on genes related to glucocorticoid response and serotonin neu-
rotransmission [100,103]. The promoter region of the glucocorticoid receptor gene (NR3C1) appears to be extremely
sensitive to DNA methylation. Various stressor events, including child abuse, war and genocide-related trauma, ma-
ternal depression, or violence during pregnancy, correlate with increased [104–110] and decreased [105,111,112]
methylation levels in NR3C1. Methylation of NR3C1 is also altered in the post-mortem brains of suicide victims and
is associated with childhood traumatic experiences [113,114]. In these works, methylation levels frequently are in-
versely proportional to NR3C1 expression, and low levels of GR can directly impact the feedback of glucocorticoid re-
lease and HPA activity, contributing to altered responses to stress. Regarding the serotoninergic system, the serotonin
transporter gene (SLC6A4) methylation levels are related to traumatic events, child abuse, work stress, and depression
[115–121], and although it does not correlate with mRNA expression in the blood of patients, the hypomethylation
of SLC6A4 is proposed to be a biomarker of diagnosis and drug response to major depression [118,122].

Histones modifications
Histones are proteins that, together with DNA, make the chromatin and organize its packaging state. There are four
types of histones: H2A, H2B, H3, and H4. The addition of chemical groups to amino acid residues of the histones alters
their binding to DNA modulating the access of transcription factors. The addition of group acetyl, or acetylation, is
a modification primarily associated with gene expression. It occurs due to the action of histone acetyltransferases
(HATs) and is erased by histone deacetylases (HDACs). Histone methylation is another modification related to gene
expression or repression depending on the location of the methyl group. It is catalyzed by histone methyltransferases
and reversed by histone demethylases, also occurring on lysine residues [123,124].

In humans, there are only a few works exploring histone mark changes in the context of stressful experiences and
neuropsychiatric diseases. In these studies, they found differences in tri-methylation of H3 at lysine 27 (H3K27me3)
and at lysine 4 (H3K4me3) levels in the brains of suicide victims when it was compared between control and depressive
groups [125–127]. On the other hand, in animal models, several types of stressors, such as maternal separation, social
stress, restraint stress, and chronic mild stress, induce alterations in HDACs and histone acetylation/methylation
levels in a global or gene-specific manner [128–130]. Interestingly, antidepressant drugs with different mechanisms
of action, such as ketamine, imipramine and fluoxetine, not only ameliorate behavior alterations after the stress but
also alters HDACs activity and expression, or impact levels of acetylation at specific histone residues associated with
important genes related to synaptic plasticity, such as Nr2b and Bdnf genes [131–138].
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Non-coding RNAs
Micro RNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and piwi RNAs (piR-
NAs), along with others, are regulatory non-coding RNAs, which regulate transcription and translation processes
most often through binding to mRNA [139]. Among these, miRNAs are the most characterized regarding their bio-
genesis and role in diseases. The binding of miRNA to complementary sequences of mRNAs induces their cleavage
or, in the case of partial complementarity, induces the inhibition of translation in ribosomes [139].

miRNAs can either be regulated by stress signaling or act as a regulator of the stress response [140]. The capacity
of a single miRNA to bind several mRNAs allows it to modulate entire cellular pathways, which in part explains
altered levels of the same miRNA in different diseases. On stress-related diseases, it is possible to highlight some
stress-regulated genes such as Nr3c1, Bdnf, Ntrk2, Slc6a4, and Crhr1 [141–144], which are also found to be regulated
by histone modifications and DNA methylation [145–147]. Moreover, the miRNA network regulates and is regulated
by proteins related to other epigenetic processes, such as HDACs, DNMTs, and MeCP2 [148]. Due to the stability and
the facility to detect changes in easily accessible tissues, such as blood and saliva, miRNAs are indicated as excellent
biomarker candidates for disease and treatment responsiveness [149].

Possible crosstalk between the eCB system and epigenetic
mechanisms in stress response and psychiatric disorders
(Endo)cannabinoid control of epigenetic mechanisms
Cannabis use induces epigenetic alterations, supporting a relationship between the eCB system and epigenetic mech-
anisms. For instance, Cannabis-dependent patients have reduced methylation of the CB1 receptor gene promoter
(Cnr1) and increased CB1 expression in the blood [150]. The same profile of methylation and CB1 expression was
observed in peripheral blood lymphocytes of patients with schizophrenia reporting the use of Cannabis [151]. More-
over, prenatal Cannabis exposure decreased D2 receptors mRNA in Nucleus Accumbens (NAc) and amygdala of
aborted fetuses, which was replicated in an animal model. In this model, there was increased di-methylation at ly-
sine 9 of H3 (H3K9me2), a repressive mark, and decreased H3K4me3, mentioned earlier, an enhancer mark, and
RNA polymerase II at the Drd2 gene locus [152,153], supporting the role of an epigenetic mechanism induced by
Cannabis in decreasing D2 expression. These changes have implications for drug addiction, which will be discussed
later, and other psychiatric conditions. For instance, the chronic administration of a CB1 agonist to adolescent male
rats has been implicated in greater susceptibility to stress and anxiety-like behavior, in addition to increase DNMT
and global methylation levels in the PFC of their adolescent offspring [154]. Also, paternal activation of CB2 receptors
was implicated in impaired offspring growth via reduced expression of TET enzymes and altered DNA methylation
in several genes [155].

Regarding treatment with CBD, it was demonstrated that acute CBD treatment decreased immobility in mice in
the forced swimming test, similar to what was observed with DNMT inhibitors (5-AzaD and RG108). Interestingly,
the combination of ineffective doses of CBD and DNMT inhibitors induced similar antidepressant effects, suggesting
CBD effects could be directly modulating DNMTs. In fact, all drugs prevented the swimming stress-induced reduc-
tion of the DNA methylation in the PFC and the increase in the hippocampus. However, whereas the DNMT activity
was decreased by swimming stress in the PFC and increased in the hippocampus, CBD could only counteract the
first in this work [156]. In contrast, the hippocampal neurodegeneration induced by iron administration in neona-
tal rats, which induces mitochondrial DNA methylation alterations, was reverted by treatment with chronic CBD
during adulthood [157]. Finally, subacute treatment with CBD induced hypomethylation of DNMT3a in the mouse
hippocampus [158], a mechanism already shown to induce gene expression related to neurogenesis [159,160]. These
pieces of evidence suggest a role for DNA methylation in CBD effects in animal stress models. As described before,
many of these makers are also involved in stress-related disorders, and CBD has anxiolytic/antidepressant effects in
psychiatric patients [161]. Therefore, it is possible to suggest that these CBD effects may involve DNA methylation;
however, there are no studies in humans with this analysis, which would be very useful for better conclusions.

Histone modifications may also be involved in effects mediated by cannabinoids. Repeated co-administration of
THC and CBD increased the acetylation in lysine 9 (H3K9ac) and 14 (H3K14ac) of H3 in the ventral tegmental area
of adult mice [162]. In another study, acute CBD treatment increased levels of methylation and acetylation markers
H3K4me3, H3K27me3, and H3K9ac in the cerebral cortex. In contrast, it decreased H3K9ac levels in the hypothala-
mus and H3K4me3 in the pons in rats, demonstrating that its effects are brain area-specific [163].

Chronic unpredictable stress (CUS) increased the nuclear expression and activity of HDAC2 and decreased the
expression of CB1 levels, mainly in glutamatergic neurons, in the mouse cingulated cortex. Moreover, CUS reduced
the expression of H3K9ac associated with CB1 and Neuropeptide Y (NpY) genes. They also showed that URB597, a
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FAAH inhibitor, which is expected to increase anandamide levels, reverted stress effects in the Npy gene, but not in
Cnr1, and anxious behavior [164]. Like stress, a TRPV1 agonist (capsaicin), which increased immobility in the forced
swimming test, increased HDAC2 expression in the mouse DG of the hippocampus [165] and enriched HDAC2
expression at Dlg4, Syp, Gria1, and Gria2 gene promoters, all related to neuroplasticity [166]. In contrast, genetic
deletion of TRPV1 receptors, which induced an antidepressant-like phenotype, reduced HDAC2 levels in the same
brain region and consequently increased levels of H3 and H4 global acetylation. In addition, TRPV1 knockout mice,
contrary to what was observed with capsaicin injection, showed increased levels of plasticity and neurogenesis-related
genes in the hippocampus, in addition to being resilient to stress [166]. Therefore, considering anandamide activates
CB1 and TRPV1 receptors, we suggest that the bell-shaped profile of anandamide effect on behavior may be mediated
by differential effects on CB1 and TRPV1 receptors, among other mechanisms, regulating the expression and activity
of HDAC2, histone acetylation levels, gene expression, and neuroplasticity.

As described before, miRNAs play an essential role in gene expression regulation, being implied in several diseases.
eCB system activity, in turn, seems to regulate miRNA expression and, therefore, could impact the pathogenesis and
treatment of stress-related diseases. In mice, chronic mild stress (CMS) increased expression of some miRNAs in the
PFC (miR-9-5p, miR-128-1-5p, and miR-382-5p) [167] that target Drd2, Clock, Map2k, Mapk1, and Bdnf genes
[168–170], all related to the physiopathology of depression. Moreover, CMS induced decreased expression of others
miRNAs (miR-16-5p, miR-129-5p, and miR-219a-5p) [167], which target Slc6a4, Htr2a, Bdnf , Grm7, Camk2a, and
Camk2g genes, which are also related to depression physiopathology and antidepressant response [168,171–174]. In
the same study, stressed animals treated with anandamide showed increased expression of all these miRNAs compared
with the vehicle group; the depressive-like effect of stress in the forced swimming test was reverted [167]. Moreover,
early life stress-induced depressive-like behavior in rats and downregulated miR-16 in males and miR-135a in females
in the mPFC. These changes were reversed when rats received a FAAH inhibitor [175].

Additionally, lower expression levels of let-7d miRNA were observed in the cortex and hippocampus of CB1 knock-
out mice or after CB1 knockdown in zebrafish embryos. Conversely, the knockdown of let-7d in zebrafish embryos
increased the expression of CB1 receptors, suggesting negative feedback in this regulation [176,177]. Moreover, let-7d
overexpression in adult mouse hippocampus induced anxiolytic- and antidepressant-like effects [178]. Thus, it is ar-
guable that anxiolytic and antidepressant effects induced by CB1 activation are promoted by let-7d expression and
that this mechanism may be impaired in psychiatric conditions, such as depression. Furthermore, the anxiolytic and
antidepressant effects induced by let-7d increased expression may occur, between other mechanisms, by the negative
regulation of dopamine D3 receptors, mu-opioid receptors, TLX, an orphan nuclear receptor, and upregulation of
miR-9, regulating neuroplasticity, cellular proliferation, neuronal differentiation, and migration [178–180].

In summary, the eCB system activity regulates the expression and activity of epigenetic enzymes, such as TETs,
DNMTs, and HDACs, which result in differential global and specific-site levels of DNA and histone modifications.
Moreover, the eCB system is also involved in miRNA expression regulation. All these alterations change gene expres-
sion related to neurotransmission, neurogenesis, and neuroplasticity. These mechanisms, also altered by stress, may
be involved in the development of psychiatric conditions; therefore, more studies are needed to better understand
how they work in physiological and pathological conditions to determine if they could be targets for treating these
conditions.

So far, only a few studies combine stress protocols, modulation of the eCB system, and evaluation of epigenetic
output, highlighting the need for more studies addressing that combination. These studies are summarized in Table
1. How eCB system molecules modulate epigenetic factors in stress-related contexts are outlined in Figure 1A.

Epigenetic control of the endocannabinoid system
Although the relevance of the epigenetic mechanisms to the activity of the endocannabinoid system is well known
[181–184], this regulation in the context of stress is less explored. The investigation of epigenetic control of the eCB
system relies mainly on the regulation of Cnr1 and Faah genes. This specificity can be explained by the attention
these two genes receive due to their pharmacological importance in physiology and disease and their susceptibility
to being regulated by epigenetic marks.

DNA methylation levels of Cnr1, for example, is reported to be inversely proportional to mRNA and protein ex-
pression of the gene [185–191]. Cnr1 methylation pattern is recurrently found altered in a variety of situations, such
as diet [190,192,193], patients with schizophrenia [189], and THC consumption [150]; Cnr1 is also susceptible to
demethylation by the agent 5-aza-2-deoxycytidine [194]. On the other hand, Faah hypermethylation is associated
with alcohol consumption [195], while hypomethylation, along with an increase in mRNA and protein expression, is
related to Alzheimer’s disease patients [196]. Nonetheless, the methylation of Cnr1 and Faah in stressful conditions
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Table 1 Studies combining stress protocol, eCB system modulation and epigenetic output in animal models

Pharmacological
intervention Sex, strain, age Stress Behavioral outputs Molecular outputs Reference

Prenatal CB1 agonist
(WIN55212-2; 1.2

mg/Kg/day); from PND30
to PND49

♂ Rats, adolescent and
adult

Offspring (PND60)
exposed to Unpredictable
stress during one week

Anxiogenic effect in the
OFT induced by WIN in

stressed offspring (PND68)

WIN ↑ global methylation
and DNMT3a levels in the
PFC of stressed offspring

WIN ↑ DNMT1 levels in the
PFC only in non-stressed

offspring

[154]

FAAH inhibitor (URB-597;
1.0 mg/Kg/day);

from the 5th to the 11th
week of stress protocol

♂ mouse, 6 weeks old CUS for eleven weeks Not evaluated CUS ↑ expression and
activity of HDAC2 in the

cingulate cortex
CUS ↓ expression of

H3K9ac associated with
npy and cnr1 genes in the

cingulate cortex
URB reverted the effect of

stress in the npy gene

[164]

TRPV1 KO
TRPV1 KD in DG

♂ mouse, 4-5 weeks old CUS for 14 days CUS induced learned
helplessness (LHT) in WT,

but not in TRPV1 KO.
Antidepressant- and

anxiolytic effect of TRPV1
KO in the FST and NSFT,

independent of stress
exposure.

TRPV1 KD in the DG
mimics the TRPV1 KO
phenotype in the FST

↓ HDAC2 levels in the
hippocampus of TRPV1

KO
↑ H3 and H4 global

acetylation levels in TRPV1
KO hippocampus
↑ expression of

neuroplasticity and
neurogenesis genes in

TRPV1 KO hippocampus
TRPV1 KD in the DG

mimics the TRPV1 KO
phenotype

[166]

AEA; 5 mg/Kg/day; After
forced swimming pretest,
5 hours before and 1 hour

after FST

♂ mouse, 3 months old CMS for 7 weeks CMS induced
depressive-like behavior in

the FST and SPT
AEA ↓ the stress effect in

the FST

CMS ↑ miR-9-5p,
miR-128-1-5p, and
miR-382-5p, and ↓

miR-16-5p, miR-129-5p,
and miR-219a-5p

expression in the PFC
AEA ↑ expression of

miR-9-5p, miR-128-1-5p,
miR-382-5p, miR-16-5p,

miR-129-5p, miR-219a-5p
in the PFC of stressed

mice

[167]

FAAH inhibitor (URB-597;
0.4 mg/Kg/day); From

PND45 to PND60)

♂ and ♀ rats ELS (from PND7 to PND
14)

ELS:
♂: ↓ distance traveled and
↑ freezing time in the OFT;
♀: ↑ freezing time in the

OFT;
URB treatment: ↑ SP in

stressed ♂ and ♀;
↓SP in non-stressed ♀;
↑ the SR discrimination

index in stressed ♂ and ♀;
↓ SR in non-stressed ♂;
↓ immobility in the FST in

stressed ♂ and ♀;
↑ immobility in FST in

non-stressed ♂;

URB treatment: ↑
expression of miR-135a in
the mPFC and ↓ it in the

LHa and DR of
non-stressed ♂ and ♀;

Normalized the expression
of miR-135a in the mPFC

of stressed ♀;
↓ expression of miR-135a

in the CA1 region of
non-stressed ♂;

↑ the expression of
miR-135a in the CA1

region of non-stressed ♀;
↓ miR-135a expression in

the DR of stressed ♀;
Normalized the expression
of miR-16 in the mPFC of

stressed ♂;
↑ expression of miR-16 in
the mPFC of non-stressed

♂
↑ expression of miR-16 in

CA1 region of
non-stressed ♀

↑ expression of miR-16 in
the LHa of stressed ♂

↓ expression of miR-16 in
the LHa of non-stressed ♀;
↑ expression of miR-16 in

the DR of stressed ♀;

[175]

Continued over
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Table 1 Studies combining stress protocol, eCB system modulation and epigenetic output in animal models (Continued)

Pharmacological
intervention Sex, strain, age Stress Behavioral outputs Molecular outputs Reference

↑: increased; ↓: decreased; ♀: female animals; ♂: male animals; AEA, anandamide; CA1, Cornus Ammonics subfield 1 of hippocampus; CB1 and CB2,
cannabinoid type 1 and 2 receptors; CMS, chronic mild stress; CUS, chronic unpredictable stress; DG, dentate gyrus; DNMT, DNA-methyltransferase;
DR, dorsal raphe; ELS, early life stress; FAAH, fatty acid amide hydrolase; FST, forced swimming test; HDAC, histone deacetylase; KD, knockdown; KO,
knockout; LHa, lateral habenula; LHT, learned helplessness test; mPFC, medial prefrontal cortex; NSFT, novelty suppressed feeding test; OFT, open
field test; PFC, prefrontal cortex; PND, postnatal day; SP, sucrose preference; SPT, sucrose preference test; SR, social recognition; TRPV1, transient
receptor potential vanilloid type 1.

are less explored. Chronic stress induces depressive-like behavior and results in hypermethylation in Cnr1 [188], in-
cluding in several CpG islands of Cnr1 gene in sperm of the stressed rats and in their offspring’s brains [197]. In
PTSD patients, the Cnr1 gene was one of several uniquely methylated genes found in patient’s PBMC [198], sug-
gesting variations in CB1 expression could be involved in the pathology of this disease, as well as other psychiatric
diseases, as discussed in previous reviews [67,199].

Histone modifications are also found in Cnr1 and Faah genes. Ethanol treatment in mice is correlated with an
increase in histone acetylation marker H4K8a and Cnr1 expression and a decrease in histone methylation marker
H3K9me2 in the neocortex and hippocampus [200,201]. On the other hand, histone methylation marker H3K9me2
and mRNA expression of the Cnr1 gene are induced at dorsal root ganglion in a model of nerve injury in mice [202].
Although no change in DNA methylation was observed in a model of binge-eating behavior, histone acetylation
H3K9ac associated with the Faah gene and its mRNA expression decreased after frustration stress [203]. Moreover,
after exposure to CUMS, histone acetylation H3K9ac decreased in the Cnr1 gene, although its mRNA expression
remained unchanged [164].

Several miRNAS are reported as modulators of genes of the eCB system, including genes of Cnr1, Cnr2, and Faah
(Table 2). Except for the miR-let-7d, which inhibits but does not have Cnr1 as a direct target [176], all described
miRNAs have predicted pairing to their targets so far [176,192,204,205,206,207,208,209,210,211]. All these miRNAs
directly bind to the transcript, inhibiting eCB-related gene expression.

Similar to what is seen in studies evaluating DNA methylation and histone modifications related to the eCB system,
most works describe miRNAs regulating Cnr1 expression in the context of stressful or psychiatric conditions. For in-
stance, miR-128 is down-regulated in the blood of PTSD patients [224] but is up-regulated in the brain of depressed
subjects [225]; however, it is also reported to increase in blood after 12 weeks of antidepressant treatment [146].
Overall, these data could suggest that miR-128 participates in disease and treatment response, but this pattern can be
different depending on the psychiatric condition and the evaluated tissue. In animal models, miR-128 up-regulation
is found in the amygdala, PFC, and hippocampus of stressed mice [220,225,226], which indicates it can participate
in brain functions. Another miRNA, miR-301a, is also up-regulated in the brain of depressed suicide victims [227]
and chronically stressed rats [228]. miR-494 findings in the blood and brain are contrasting: it was upregulated in
blood of major depression patients [235] and after antidepressant treatment [146], in depression episodes [232], in
a PTSD rat model [233]; however, it was downregulated in the brain of depressed suicide victims [227] or in the
brain of acutely stressed rats [219]. miR-494 also had an anxiolytic effect in ethanol-exposed rats [231]. Moreover,
miR-29a is up-regulated in the blood of stressed students but down-regulated in treatment-resistant depression pa-
tients [214,215]. After restraint stress, rats subjected or not to maternal separation have up-regulation of miR-29a in
the amygdala and PFC [216], which is increased in the cerebral spinal fluid of MDD patients [217]; it is also increased
in the frontal cortex of mice exposed to acute restraint stress [219] but decreased in the frontal cortex after chronic
stress [218] and in the hippocampus 1 h after footshock stress in a fear conditioning paradigm [220]. Similarly, 1 h
after fear conditioning, there was also a reduction in the miR-30b expression in the hippocampus [220], as seen after
acute restraint stress [219], whereas chronic stress increases the same miR-30b in the hippocampus [223]. Another
miRNA, miR-let-7d, appears to be important in various stress processes. It was reduced in the blood of MDD patients,
and increased after antidepressant treatment [146,235]; its levels changed in the PFC, hypothalamus, hippocampus,
and amygdala of animal models after different types of stressors [220,223,234,236]. Meanwhile, overexpression of
miR-let-7d in the hippocampus has anxiolytic and antidepressant effects in mice, corroborating its function in be-
havior and potential impact in neuropsychiatry diseases [178]. Although there is no evidence of alterations in humans,
miR-338-5p and miR-23a are altered after protocols of social stress and chronic unpredictable stress [212,223,229].
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Table 2 miRNAs related to the eCB system in animal models involving stress exposure or in psychiatric patients

Gene miRNA Population/Model Sample Results Reference

Cnr1 MiR23a [192] CSD susceptible mice Hippocampus ↑ [212]

miR-29a [204] MS-ARS rats mPFC ↑ [213]

Treatment-resistant
depression

Serum ↓ [214]

Chronic academic stress
students

Total blood ↑ [215]

ARS mice Basolateral amygdala ↑ [216]

miR-29b [205] MDD patients Cerebral spinal fluid ↑ [217]

CUMS mice PFC ↓ [218]

ARS mice FC ↑ [219]

Fear conditioning mice Hippocampus ↓ [220]

miR-30b [206] MDD suicide subjects PFC ↑ [221]

ARS mice FC ↑ [219]

CSD rats Ventral hippocampus ↑ [222]

CUMS resilient mice Amygdala ↓ [223]

Fear conditioning mice Hippocampus ↓ [220]

miR-128 [207] PTSD patients Total blood ↓ [224]

Tail shocks rats Amygdala ↑ [225]

Fear conditioning mice PFC ↑ [226]

Fear conditioning mice Hippocampus ↑ [220]

MDD patients after
escitalopram treatment

Total blood ↑ [146]

Depressed suicide
subjects

Amygdala ↑ [225]

miR-301ª [192] Depressed suicide
subjects

PFC ↓ [227]

CUMS mice Ventral tegmental area ↓ [228]

miR-338-5p [208] Psychological stress
susceptible mice

PFC ↑ [229]

CUMS resilient mice Amygdala ↓ [223]

miR-494 [209] Depressed suicide
subjects

PFC ↓ [227]

MDD patients Plasma ↑ [230]

Ethanol exposed rat
overexpressing
antagomiR-494

Amygdala Anxiolytic [231]

MDD patients after
escitalopram treatment

Total blood ↑ [146]

MDE patients Peripheral blood
mononuclear cells

↑ [232]

PTSD Rat model Serum ↑ [233]

ARS mice FC ↓ [219]

miRNA let-7d [176] ARS mice PFC ↓ [234]

MDD patients Total blood ↓ [235]

MDD patients after
escitalopram treatment

Total blood ↓ [146]

PTSD mice model PFC ↓ [236]

Hypothalamus ↑ [236]

Mice overexpressing
miRNA let-7d

Hippocampus Anxiolytic [178]

Antidepressant [178]

CUMS resilient mice Amygdala ↑ [223]

Fear conditioning mice Hippocampus ↓ [220]

Cnr2 miR-187-3p [210] ARS mice Basolateral amygdala ↓ [216]

Contextual fear
conditioning mice

Dorsal hippocampus ↓ [237]

Extinction of contextual
fear conditioning mice

Basolateral amygdala ↑ [238]

Psychological stress
susceptible mice

mPFC ↓ [229]

Continued over

10 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://portlandpress.com

/neuronalsignal/article-pdf/7/2/N
S20220034/948429/ns-2022-0034c.pdf by guest on 24 April 2024



Neuronal Signaling (2023) 7 NS20220034
https://doi.org/10.1042/NS20220034

Table 2 miRNAs related to the eCB system in animal models involving stress exposure or in psychiatric patients (Continued)

Gene miRNA Population/Model Sample Results Reference

CUMS susceptible mice Amygdala ↓ [223]

miR-665 [209] CUMS resilient mice Amygdala ↑ [223]

Faah mir-411 [211] MS rats Hypothalamus ↑ [239]

MS rats PFC Inversely proportional to
sucrose preference

[240]

CUMS rats Hippocampal Dentate
Gyrus

↑ [241]

↑: miRNA up-regulation; ↓: miRNA down-regulation; ARS, acute restraint stress; CRS, chronic restraint stress; CSD, chronic social defeat; CUMS,
chronic unpredictable mild stress; MDD, major depressive disease; mPFC, medial prefrontal cortex; MS, maternal separation; PFC, prefrontal cortex,
PTSD, post-traumatic stress disorder.

These works evidence a complex control by different miRNAs, including similarities or differences among patients
with different psychiatric conditions and differences in animal models involving stress exposure.

There are two miRNAs reported to modulate Cnr2 in animal models of stress: miR-187-3p and miR-665.
miR-187-3p is regulated in several stress protocols, including chronic mild stress, acute restraint stress, psychological
stress, and after fear conditioning, indicating that miRNA as having an important role in stress responses in general
[216,223,229,237,238]. Both acute and chronic stressors can decrease miR-187-3p expression in the amygdala, while
it was up-regulated after the evaluation of extinction of conditioned fear memory [238]. Additionally, miR-665 is
altered in the amygdala, being up-regulated after chronic mild stress [223]. miR-411, for the best of our knowledge,
is the only FAAH miRNA regulated by stress, and it is only found regulated in animal models; it was increased in the
hypothalamus, PFC, and hippocampus after maternal separation or chronic unpredictable mild stress [239–241].

eCB system genes are considerably sensitive to epigenetic control, particularly under stressful experiences, although
the mechanisms are not completely elucidated. The discussed evidence highlights the importance of epigenetic mech-
anisms in the eCB system response to stress and in its dysfunction. For instance, histone modifications are fundamen-
tal to memory consolidation and extinction [242,243], and intervention in these processes could be key to treating
trauma-related disorders. In fact, some stressors can induce histone modifications in the Faah and Cnr1 genes, which
can reverberate or not in mRNA expression; moreover, the histone modifications, as acetylation, is one of the pro-
posed mechanisms for the action of antidepressant drugs [244]. Even when the gene or the protein expression is not
altered, epigenetic markers can influence the gene expression pattern in response to the environment. DNA methy-
lation and miRNA expression are already suggested as biomarkers of disorders, prognosis, treatment prediction, and
response. Considering the findings with the CB1 receptor in human and animal models, epigenetic modifications in
the Cnr1 gene are promising biomarkers in neuropsychiatry conditions [67].

Possible cross-talk between eCB system and epigenetics in
drug abuse and stress
The eCB system is critical to the reward-related effects of dopamine, which is involved in the neurobiological mecha-
nism underlying drug addiction [245]. Indeed, the modulation of the eCB system regulates molecular and behavioral
responses promoted by distinct addictive drugs, including psychostimulants and alcohol [246,247]. Stress is an im-
portant risk factor in the neurobiology of drug addiction [248,249]. Previous stress exposure is correlated to the
vulnerability to developing the disorder and the reinstatement of drug seeking. Interestingly, behavioral and molec-
ular evidence indicates that the eCB system is a required element in the ability of stress to modulate drug responses
[250,251]. This convergence is consistent with the fact that exposure to addiction drugs promotes changes in impor-
tant brain structures also involved in stress biology, such as the PFC, nucleus accumbens, hippocampus, and amygdala,
which are also important targets for cannabinoids [252]. In this way, similarly to what was described for stress events,
exposure to addiction drugs also modulated the eCB system, which involves epigenetic mechanisms.

For instance, cocaine self-administration (SA) promotes histone modifications and chromatin looping in the eCB
system-associated genes [253]. Animals exposed to cocaine demonstrated increased H3K4me3 enrichment on the
hippocampus’s promotor regions of FAAH and DAGLα coding genes. Moreover, using a 4C-seq approach target-
ing the Cnr1 promoter, authors also demonstrated that cocaine SA induces remodeling of chromatin loops in the
hippocampus and the NAc, suggesting that 3D chromatin architecture at the Cnr1 locus was substantially changed
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Figure 2. Mechanisms involved in the cross-talk between the eCB system and epigenetic mechanisms in stress- and drug

abuse-related contexts

(A) In stressful contexts, interference with the eCB system can modulate a wide range of epigenetic factors. CB1 receptors, for

example, modulate the expression of DNMTs and the microRNA let-7d. Moreover, the inhibition of FAAH and consequent increase

in AEA levels, which may act at CB1 receptors, increases the expression of several miRNAs (miR-9-5p, miR-128-1-5p, miR-382-5p,

miR-16-5p, miR-129-5p, miR-219a-5p, miR-16, and miR-135a) and H3K9ac levels at npy gene, and decreases the expression and

activity of HDAC2. Moreover, TRPV1 receptors activation increases the expression of HDAC2 and reduces global H3/H4 acetylation

levels. Finally, CB2 receptors have been shown to reduce TET enzyme levels. (B) Stress can regulate eCB genes through epigenetics

tools. CB1 expression is reported to be sensitive to hypermethylation and increased levels of H3K9ac of the gene and affected by

miRNAs (miR-23a, miR-29a, miR-29b-3, miR-30b, miR-128, miR-301a, miR-338-5p, miR-494, and miR-let-7d). FAAH expression

may also be altered by H3K9ac and the miR-411. Furthermore, CB2 is one target of miR-187-3p and miR-665 expression. (C) The

cross-talk between the systems in the context of drug abuse is very diversified since drugs with different mechanisms of action

promote different alterations. For example, alcohol increases H4K8ac in the CB1 gene, and its protein expression is related to the

down-regulation of MeCP2. Alcohol also down-regulates DNMT1 and DNMT3a and upregulates HDAC1, HDAC2, and HDAC3, and

all these effects are blocked by CB1 antagonism. Moreover, DNA methylation of the FAAH gene is affected by alcohol exposure.

Cocaine consumption is reported to increase H4K9me3 in FAAH and DAGLα genes. Regarding exposure to cannabinoids, THC

induces global levels of H3K4me3 and H3K9me2 and can increase or decrease H3K9me3 depending on the exposure. More details

about these mechanisms can be found in the main text. Dashed arrows indicate inhibition or reduction. Continuous arrow indicate

induction or increase. Question mark indicates that the CB1 involvement after FAAH inhibition was not directed tested.

following cocaine exposure [253]. Pieces of evidence also have demonstrated that the eCB system undergoes epige-
netic modulation by alcohol, as briefly mentioned before. A blind epigenome-wide analysis of datasets that explored
hazardous drinkers and binge drinkers versus controls evidenced that Faah hypermethylation is associated with al-
cohol consumption [195]. Accordingly, an elevation in the expression of CB1 associated with increased H4K8ac at the
Cnr1 promoter was observed in adult mice exposed to alcohol on postnatal day 7 (PD7) [254]. These results provide
evidence that epigenetic mechanisms contribute to altered regulation of the eCB system in response to specific abuse
drugs.

Interestingly, epigenetic changes promoted by exposure to alcohol also appear to be modulated by the eCB system.
Nagre and colleagues observed that treatment with ethanol in PD7 mice impaired DNA methylation through reduced
DNA methyltransferases (DNMT1 and DNMT3A) levels; these effects were reversed by the blockade of CB1 before
ethanol treatment [255]. Similarly, alcohol exposure at the PD7 was associated with enhanced HDAC1, HDAC2, and
HDAC3 expression, which was also prevented by administering a CB1 receptor antagonist before alcohol exposure
[256]. Moreover, using a similar protocol, another study demonstrated that exposure to ethanol activates the apop-
totic caspase-3 enzyme via CB1 in neonatal mice and causes a reduction in MeCP2 levels [257]. Regarding miRNA
processes, a reduction in the expression of brain CB1 was coupled with an increased complementary miR-26b in a
mouse model of fetal alcohol spectrum disorders [258].
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Corroborating the role of the eCB system in the regulation of drug response during development, converging
pieces of evidence support that treatment with THC in early phases of development promotes epigenetic changes
[259]. For instance, prenatal THC exposure significantly modifies the histone methylation profile in the NAc. Subjects
exposed to THC during prenatal stage showed a decreased level of the H3K4me3 [152]. Similarly, persistent changes
in H3K9, increased dimethylation and reduced trimethylation, were observed in the NAc of adult rats following
adolescent THC exposure [260]. Another study observed a significant increase of H3K9me2 in the hippocampus and
the amygdala of female rats exposed to THC during adolescence [261]. Moreover, using the same adolescent THC
exposure, there was an enhancement in H3K9me3 in the nucleus accumbens, hippocampus, and PFC [261,262].
Preconception THC exposure also disrupts DNA methylation in the NAc, with cross-generational effects. In a study
comparing rats with or without parental THC exposure, 1027 differentially methylated regions (406 hypermethylated
and 621 hypomethylated) associated with parental THC exposure were found in the subsequent generation, even
though they were not directly exposed to the drug [263].

Confirming the correlation between the inheritance of paternal epigenetic changes and cannabinoid exposure,
developmental changes in the offspring were associated with premating paternal THC exposure [264]. Exposure to
cannabinoids has also been associated with changes in sperm DNA methylation. The analysis of sperm DNA from
adult rats exposed to 2 mg/kg of THC for 12 days identified 627 genes whose methylation status was altered [265].
Similarly, significant differential methylation of genes related to neurodevelopment was observed in the sperm of
rats exposed to THC via oral gavage [266]. Similarly to the preclinical reports, substantial changes in both hypo-
and hyper-DNA methylation, with the latter predominating, were determined in the sperm methylome of marijuana
smokers [265]. The impact of cannabis exposure on DNA methylation status also was investigated directly in hu-
man spermatogenesis in vitro. The results revealed alterations in DNA methylation levels of genes related to autism,
HCN1, and NR4A2 [267]. These studies provide compelling evidence that preconception exposure to cannabinoids
can impact reproduction and paternal epigenetic inheritance, potentially leading to altered DNA methylation patterns
that have an impact on gene expression and developmental outcomes in offspring.

Altogether these findings support the idea that the eCB system is involved in regulating epigenetic mechanisms
and has an essential role in the effects of addictive drugs. Since this response profile also was observed with stress
exposure and considering the role of stress in the neurobiology of the substance use disorder, future studies might
evaluate the involvement of the eCB system in the modulation of drug addiction by stress.

Final remarks
In the last two decades, much attention was directed toward understanding how exposure to different stressors could
result in long-term changes in the organism that could result in psychiatric disorders. In this context, a boom of
studies evaluating epigenetic changes in animal models and a run to find epigenetic markers related to psychiatric
conditions arose, bringing many new understandings in the neurobiology of psychiatric conditions.

Among several physiological systems affected by epigenetic modulation, one has, in particular, been in the spotlight
of scientists for more than 20 years: the endocannabinoid system. As overviewed in this review, the eCB system has
a fundamental role in controlling many functions, including the fine control of stress response and circuits involved
in drug abuse. Although not fully explored, eCB system genes are sensitive to epigenetic control [183,184,268,269].
The discussed evidence highlights the importance of epigenetic mechanisms in the eCB system response to stress,
drugs of abuse, and the dysfunctions caused by them. As epigenetic marks can persist, the long-term alteration in the
expression of cannabinoid-related proteins may be part of triggering diseases, particularly after stressors or substance
use disorder. More recently, as discussed, many studies have investigated if the behavioral consequences of exposure
to stressors in animals’ models could result in epigenetic regulation of the eCB system. Changes in miRNAs that
regulate eCB system molecules, for example, are observed after acute protocols of stress in animal models but also in
postmortem brains of depressive subjects. Epigenetic changes can persist through generations, indicating how stress
and drug exposure, for example, can modify the neurobiology along the generations.

As also discussed, in animal models, cannabinoids, including THC and CBD, promote several behavioral changes
related to psychiatric disorders and induce epigenetic modifications, mainly related to DNA methylation and histone
modifications. Besides, Cannabis use in humans appears to induce epigenetic changes not only in the eCB system
but also in the dopaminergic system and others, indicating a potential mechanism by which it could lead to psychi-
atric disorders, including substance use disorder. Finally, exposure to cannabinoids during critical periods of brain
development can induce persistent brain and behavioral changes in adulthood.

As summarized in this review, therefore, there appears to have a close relationship between modulation of the
eCB system and evaluation of epigenetic changes (DNA methylation, histones modifications, and miRNAs) under
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stress conditions (Figure 2A) and how epigenetic markers under stress conditions, mainly miRNAs, influence the
expression of eCB-related molecules (Figure 2B). Furthermore, common drugs of abuse, including alcohol, cocaine,
and cannabis (THC), could promote their long-term effects by promoting epigenetic changes that impact the eCB
system (Figure 2C). The elucidation of epigenetic mechanisms controlling, or being controlled by, the eCB system
in stress-related disorders is essential to better understand the neurobiology of those disorders and to provide new
treatment approaches. Finally, understanding the cross-talk between those systems can potentially lead to the identi-
fication of biomarkers, such as miRNAs, which could help to predict the course of the disease and treatment response.
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93 Coelho, A.A., Vila-Verde, C., Sartim, A.G., Uliana, D.L., Braga, L.A., Guimarães, F.S. et al. (2022) Inducible nitric oxide synthase inhibition in the medial
prefrontal cortex attenuates the anxiogenic-like effect of acute restraint stress via CB1 receptors. Front Psychiatry 13, 1–11,
https://doi.org/10.3389/fpsyt.2022.923177

94 Hill, M.N., McLaughlin, R.J., Pan, B., Fitzgerald, M.L., Roberts, C.J., Lee, T.T.Y. et al. (2011) Recruitment of prefrontal cortical endocannabinoid
signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31, 10506–10515,
https://doi.org/10.1523/JNEUROSCI.0496-11.2011

95 Lyko, F. (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92,
https://doi.org/10.1038/nrg.2017.80

96 Chin, E.W.M. and Goh, E.L.K. (2019) MeCP2 dysfunction in rett syndrome and neuropsychiatric disorders. Methods Mol. Biol. 2011, 573–591,
https://doi.org/10.1007/978-1-4939-9554-7˙33

97 Du, Q., Luu, P.L., Stirzaker, C. and Clark, S.J. (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7, 1051–1073,
https://doi.org/10.2217/epi.15.39

98 Ehrlich, M. (2019) DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics 14, 1141–1163,
https://doi.org/10.1080/15592294.2019.1638701

99 Vinkers, C.H., Kalafateli, A.L., Rutten, B.P., Kas, M.J., Kaminsky, Z., Turner, J.D. et al. (2015) Traumatic stress and human DNA methylation: a critical
review. Epigenomics 7, 593–608, https://doi.org/10.2217/epi.15.11

100 Klengel, T., Pape, J., Binder, E.B. and Mehta, D. (2014) The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 80,
115–132, https://doi.org/10.1016/j.neuropharm.2014.01.013

101 Zhang, Y. and Liu, C. (2022) Evaluating the challenges and reproducibility of studies investigating DNA methylation signatures of psychological stress.
Epigenomics 14, 405–421, https://doi.org/10.2217/epi-2021-0190

102 Bakusic, J., Schaufeli, W., Claes, S. and Godderis, L. (2017) Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J.
Psychosom. Res. 92, 34–44, https://doi.org/10.1016/j.jpsychores.2016.11.005

103 Argentieri, M.A., Nagarajan, S., Seddighzadeh, B., Baccarelli, A.A. and Shields, A.E. (2017) Epigenetic pathways in human disease: the impact of DNA
methylation on stress-related pathogenesis and current challenges in biomarker development. EBioMedicine 18, 327–350,
https://doi.org/10.1016/j.ebiom.2017.03.044
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117 Alasaari, J.S., Lagus, M., Ollila, H.M., Toivola, A., Kivimäki, M., Vahtera, J. et al. (2012) Environmental stress affects DNA methylation of a CpG rich
promoter region of serotonin transporter gene in a nurse cohort. PLoS ONE 7, e45813, https://doi.org/10.1371/journal.pone.0045813

118 Kang, H.-J., Kim, J.-M., Stewart, R., Kim, S.-Y., Bae, K.-Y., Kim, S.-W. et al. (2013) Association of SLC6A4 methylation with early adversity,
characteristics and outcomes in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 44, 23–28, https://doi.org/10.1016/j.pnpbp.2013.01.006

119 Zhao, J., Goldberg, J., Bremner, J.D. and Vaccarino, V. (2013) Association between promoter methylation of serotonin transporter gene and depressive
symptoms: A monozygotic twin study. Psychosom. Med. 75, 523–529, https://doi.org/10.1097/PSY.0b013e3182924cf4
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245 Manzanares, J., Cabañero, D., Puente, N., Garcı́a-Gutiérrez, M.S., Grandes, P. and Maldonado, R. (2018) Role of the endocannabinoid system in drug
addiction. Biochem. Pharmacol. 157, 108–121, https://doi.org/10.1016/j.bcp.2018.09.013

246 Wolfe, S.A., Vozella, V. and Roberto, M. (2022) The synaptic interactions of alcohol and the endogenous cannabinoid system. Alcohol Res.: Curr. Rev.
42, 03, https://doi.org/10.35946/arcr.v42.1.03

247 Gobira, P.H., Joca, S.R. and Moreira, F.A. (2022) Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses. Acta
Neuropsychiatrica 1–11, https://doi.org/10.1017/neu.2022.23

248 Mantsch, J.R., Baker, D.A., Funk, D., Le, A.D. and Shaham, Y. (2016) Stress-induced reinstatement of drug seeking: 20 years of progress.
Neuropsychopharmacology 41, 335–356, https://doi.org/10.1038/npp.2015.142

249 Bardo, M.T., Hammerslag, L.R. and Malone, S.G. (2021) Effect of early life social adversity on drug abuse vulnerability: focus on corticotropin-releasing
factor and oxytocin. Neuropharmacology 191, 108567, https://doi.org/10.1016/j.neuropharm.2021.108567

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

23

D
ow

nloaded from
 http://portlandpress.com

/neuronalsignal/article-pdf/7/2/N
S20220034/948429/ns-2022-0034c.pdf by guest on 24 April 2024

https://doi.org/10.1007/s00213-019-05209-z
https://doi.org/10.1016/j.psychres.2017.01.081
https://doi.org/10.1093/ijnp/pyz071
https://doi.org/10.1038/nn.2891
https://doi.org/10.1371/journal.pone.0033201
https://doi.org/10.1016/j.pnpbp.2018.05.023
https://doi.org/10.1007/s00213-020-05593-x
https://doi.org/10.1177/03000605211006633
https://doi.org/10.1016/j.biopsych.2015.10.028
https://doi.org/10.1038/tp.2012.112
https://doi.org/10.1016/j.jpsychires.2014.05.020
https://doi.org/10.3390/ijms22179439
https://doi.org/10.1016/j.jad.2016.04.021
https://doi.org/10.3390/ijms22105157
https://doi.org/10.1097/WNR.0000000000001484
https://doi.org/10.3389/fnmol.2021.778170
https://doi.org/10.1186/s12864-021-08003-4
https://doi.org/10.2217/epi-2021-0037
https://doi.org/10.1038/npp.2014.176
https://doi.org/10.1523/JNEUROSCI.3732-09.2010
https://doi.org/10.1038/npp.2012.86
https://doi.org/10.1016/j.jpsychires.2013.05.028
https://doi.org/10.1016/j.bcp.2018.09.013
https://doi.org/10.35946/arcr.v42.1.03
https://doi.org/10.1017/neu.2022.23
https://doi.org/10.1038/npp.2015.142
https://doi.org/10.1016/j.neuropharm.2021.108567


Neuronal Signaling (2023) 7 NS20220034
https://doi.org/10.1042/NS20220034

250 Tung, L.W., Lu, G.L., Lee, Y.H., Yu, L., Lee, H.J., Leishman, E. et al. (2016) Orexins contribute to restraint stress-induced cocaine relapse by
endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat. Commun. 7, 12199, https://doi.org/10.1038/ncomms12199

251 McReynolds, J.R., Doncheck, E.M., Li, Y., Vranjkovic, O., Graf, E.N., Ogasawara, D. et al. (2018) Stress promotes drug seeking through
glucocorticoid-dependent endocannabinoid mobilization in the prelimbic cortex. Biol. Psychiatry 84, 85–94,
https://doi.org/10.1016/j.biopsych.2017.09.024

252 Sinha, R (2008) Chronic Stress, Drug Use, and Vulnerability to Addiction. Annals of the New York Academy of Sciences 1141 (1), 105–130,
https://doi.org/10.1196/annals.1441.030

253 De Sa Nogueira, D., Bourdy, R., Alcala-Vida, R., Filliol, D., Andry, V., Goumon, Y. et al. (2022) Hippocampal cannabinoid 1 receptors are modulated
following cocaine self-administration in male rats. Mol. Neurobiol. 59, 1896–1911, https://doi.org/10.1007/s12035-022-02722-9

254 Subbanna, S., Nagre, N.N., Umapathy, N.S., Pace, B.S. and Basavarajappa, B.S. (2014) Ethanol exposure induces neonatal neurodegeneration by
enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int. J.
Neuropsychopharmacol. 18, 1–15, https://doi.org/10.1093/ijnp/pyu028

255 Nagre, N.N., Subbanna, S., Shivakumar, M., Psychoyos, D. and Basavarajappa, B.S. (2015) CB1-receptor knockout neonatal mice are protected
against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation. J. Neurochem. 132, 429–442, https://doi.org/10.1111/jnc.13006

256 Shivakumar, M., Subbanna, S., Joshi, V. and Basavarajappa, B.S. (2020) Postnatal ethanol exposure activates HDAC-mediated histone deacetylation,
impairs synaptic plasticity gene expression and behavior in mice. Int. J. Neuropsychopharmacol. 23, 324–338, https://doi.org/10.1093/ijnp/pyaa017

257 Subbanna, S., Nagre, N.N., Shivakumar, M., Joshi, V., Psychoyos, D., Kutlar, A. et al. (2018) CB1R-mediated activation of caspase-3 causes epigenetic
and neurobehavioral abnormalities in postnatal ethanol-exposed mice. Front Mol. Neurosci. 11, 45, https://doi.org/10.3389/fnmol.2018.00045

258 Stringer, R.L., Laufer, B.I., Kleiber, M.L. and Singh, S.M. (2013) Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an
increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders. Clin. Epigenetics 5, 14,
https://doi.org/10.1186/1868-7083-5-14

259 Szutorisz, H. and Hurd, Y.L. (2018) High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85,
93–101, https://doi.org/10.1016/j.neubiorev.2017.05.011

260 Tomasiewicz, H.C., Jacobs, M.M., Wilkinson, M.B., Wilson, S.P., Nestler, E.J. and Hurd, Y.L. (2012) Proenkephalin mediates the enduring effects of
adolescent cannabis exposure associated with adult opiate vulnerability. Biol. Psychiatry 72, 803–810,
https://doi.org/10.1016/j.biopsych.2012.04.026

261 Prini, P., Penna, F., Sciuccati, E., Alberio, T. and Rubino, T. (2017) Chronic �8-THC exposure differently affects histone modifications in the adolescent
and adult rat brain. Int. J. Mol. Sci. 18, https://doi.org/10.3390/ijms18102094

262 Prini, P., Rusconi, F., Zamberletti, E., Gabaglio, M., Penna, F., Fasano, M. et al. (2018) Adolescent THC exposure in female rats leads to cognitive
deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J. Psychiatry Neurosci.:JPN 43, 87–101,
https://doi.org/10.1503/jpn.170082

263 Watson, C.T., Szutorisz, H., Garg, P., Martin, Q., Landry, J.A., Sharp, A.J. et al. (2015) Genome-wide DNA methylation profiling reveals epigenetic
changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40,
2993–3005, https://doi.org/10.1038/npp.2015.155

264 Levin, E.D., Hawkey, A.B., Hall, B.J., Cauley, M., Slade, S., Yazdani, E. et al. (2019) Paternal THC exposure in rats causes long-lasting neurobehavioral
effects in the offspring. Neurotoxicol. Teratol. 74, 106806, https://doi.org/10.1016/j.ntt.2019.04.003

265 Murphy, S.K., Itchon-Ramos, N., Visco, Z., Huang, Z., Grenier, C., Schrott, R. et al. (2018) Cannabinoid exposure and altered DNA methylation in rat
and human sperm. Epigenetics 13, 1208–1221, https://doi.org/10.1080/15592294.2018.1554521

266 Schrott, R., Rajavel, M., Acharya, K., Huang, Z., Acharya, C., Hawkey, A. et al. (2020) Sperm DNA methylation altered by THC and nicotine:
Vulnerability of neurodevelopmental genes with bivalent chromatin. Sci. Rep. 10, 16022, https://doi.org/10.1038/s41598-020-72783-0

267 Schrott, R., Greeson, K.W., King, D., Symosko Crow, K.M., Easley, C.At. and Murphy, S.K. (2022) Cannabis alters DNA methylation at maternally
imprinted and autism candidate genes in spermatogenic cells. Systems Biol. Reproduct. Med. 68, 357–369,
https://doi.org/10.1080/19396368.2022.2073292
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