Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.

Overview on Down syndrome neurodevelopment

Trisomy of human chromosome 21 (Hsa21) was first discovered as the underlying cause of Down syndrome (DS, Ts21) in 1959 [1,2] and is the most common genetic cause of intellectual disability, affecting approximately 1 in 700 live births [3–5]. Hsa21, first sequenced in 2000, is the smallest human autosome and makes up ∼1–1.5% of the human genome [5]. Overexpression of Hsa21 genes and non-coding elements alters prenatal development of the brain, however, some effects do not appear until later in life [6–8]. Aberrant neurodevelopment in DS leads to overall smaller brain volumes and structural defects in cerebral cortex and cerebellum, affecting cognitive functions such as attention, learning, memory, and motor function to varying degrees [6,8–10]. A reduction in brain volume is detected as early as 15 gestational weeks in foetuses with DS, and by adulthood, brains of individuals with DS are ∼20% smaller than controls when corrected for their reduced body size [11,12]. While it is clear from studies of post-mortem tissue that this smaller volume is primarily due to a reduction in the number of neurons, we have a poor understanding of the causal underlying cellular deficits [13–22]. Further, the molecular mechanisms driving these anatomical abnormalities are largely unknown, which has resulted in potential treatments to enhance cognition in infants and children with DS that target symptoms rather than the basis of the disorder [10]. Importantly, it is not known whether or how these initial neurodevelopmental deficits may affect the progression of AD pathology in DS.

Overview on Alzheimer’s disease

According to the World Health Organization (WHO), Alzheimer’s disease (AD) contributes to 60–70% of the dementia cases worldwide [23]. AD causes progressive loss of memory and reduction in cognitive function that leads to dementia and ultimately death [24]. Brain atrophy due to neural and synaptic loss is also detectable in AD patients [25]. Presence of the neuropathological hallmarks amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), formed from misfolded microtubule-associated protein tau (MAPT), are necessary for disease diagnosis [26].

Although more than 90% of AD cases are late-onset (LOAD) and sporadic (sAD) with no known causal mutations [27], several disease-related mutations in the genes encoding, amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) cause early-onset AD (EOAD). APP can be processed by amyloidogenic or non-amyloidogenic pathways. In the amyloidogenic pathway, APP is cleaved in a two-step process to form Aβ. PSEN1 and 2 are subunits of the γ-secretase complex that catalyses the second cleavage step of APP yielding Aβ [28]. Mutations in PSEN1 and PSEN2 cause an increase in Aβ production or result in a shift in the Aβ40/Aβ42 ratio favouring the formation of pathogenic aggregates [29], which drives AD development. Genetic association studies have identified several risk genes involved in multiple pathways for EOAD and LOAD [30], including most significantly the ε4 allele of the apolipoprotein E (APOE) [31,32] and the more recently identified chromosome 21-encoded gene, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1) [33]. Despite the aetiology of AD not being fully understood, it is widely accepted that it is a complex disease that affects multiple cell types in the brain [34] and that immune response, endocytosis, lipid transport and vesicle trafficking modulate disease development [33,35].

The association between AD and DS

People with DS have an extremely high risk of developing AD with extensive Aβ plaque accumulation occurring in most individuals by age 40 [36–38]. By the age of 60, approximately two-thirds of individuals with DS will have developed clinical dementia [39] (Figure 1). The pattern of cognitive decline is similar in individuals who have Alzheimer’s disease in Down syndrome (DS-AD) compared with AD, although occurring earlier in DS-AD [40], and individuals with DS-AD develop seizures more frequently than other forms of AD [41]. Triplication of a dosage-sensitive gene or genes on Hsa21 likely plays an important role in the pathogenesis of AD. APP is located on Hsa21 and duplication of APP in the absence of DS leads to EOAD [42,43]. Moreover, individuals with DS who do not have a third copy of APP do not develop AD neuropathology or dementia [44,45]. Thus, the additional copy of APP plays a central role in DS-AD. The pattern and type of Aβ accumulation in individuals with DS is similar to people with EOAD and LOAD, although occurrence of cerebral amyloid angiopathy is higher in DS-AD than EOAD and LOAD [46–50] (Figure 1). In recent years, whether other genes on Hsa21 also have roles in AD pathogenesis has been studied. Several Hsa21-encoded proteins are thought to be potential candidates for this altered biology, including dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) that phosphorylates tau [51,52] and APP [53], Synaptojanin 1 (SYNJ1) that is involved in endocytosis and membrane trafficking [54], β-Secretase 2 (BACE2) – a putative Aβ-degrading protease [55] and Cystatin B (CSTB), an endogenous inhibitor of cysteine cathepsins [56,57].

Schematic of the development of AD neuropathology and dementia in individuals who have DS

Figure 1
Schematic of the development of AD neuropathology and dementia in individuals who have DS

People who have DS first develop Aβ deposition, NFTs and then go on to develop dementia in middle age.

Figure 1
Schematic of the development of AD neuropathology and dementia in individuals who have DS

People who have DS first develop Aβ deposition, NFTs and then go on to develop dementia in middle age.

Close modal

While chromosome 21 genes account for the majority of differentially expressed genes in DS, genes on other chromosomes are also differentially expressed and may also play a role in DS-AS progression [58]. Lockstone et al. found that APOE, while not an Hsa21 gene, is up-regulated in DS [58]. Recently, Bejanin et al. screened for the prevalence of the APOE ε4 AD-risk allele in 464 adults with DS [59]. They reported that 20.9% of individuals with DS had the APOE ε4 allele. These individuals had earlier cognitive decline and earlier clinical symptoms of AD compared with the 79.1% of DS individuals without the APOE ε4 allele [59], similar to findings in the general population and previous reports in individuals with DS [60–66]. Exploring the mechanistic roles of APOE isoforms and other non-Hsa21 genes in the pathogenesis of AD in DS is important for developing effective treatments for DS-AD.

Uses and limitations of DS-AD mouse models

Mouse models overexpressing causal mutations of familial Alzheimer’s disease (fAD) are widely used in AD research, and recapitulate aspects of disease pathology [67], although differences in human and mouse biology limit the use of these systems for some key aspects of disease; most notably AD-neuroinflammation [68]. Moreover, compared with AD models, it is more challenging to generate DS mouse models because of the genetic complexity of the disorder and since orthologue genes of Hsa21 are located on regions of three mouse chromosomes (Mmu10, Mmu16 and Mmu17) [69]. However, to date, several DS mouse models have been developed [70,71] and have been used to study aspects of DS-AD (Figure 2).

Schematic illustration of DS mouse models

Figure 2
Schematic illustration of DS mouse models

The regions of Mmu10 (purple), Mmu17 (orange) and Mmu16 (blue) that are homologous with Hsa21 (long arm) as indicated. The content of the transchromosome 21 in the Tc1 and TcMAC21 models with deletions and key rearrangements as indicated. The Tc1 mouse model has a human centromere (red circle). The TcMAC21, Ts65Dn and Ts66Yah have mouse centromeres (blue circle). The region Mmu16 with an additional copy in the Ts65Dn, Ts66Yah, Dp1Yey, Dp1Tyb, Dp2Tyb, Dp3Tyb and Dp9Tyb as indicated. The duplication of Mmu17 in the Dp(17)3Yey and the duplication of Mmu10 in Dp(10)2Yey as shown. The approximate human APP gene position is shown in bold, the TcMAC21, Ts65Dn, Ts66Yah, Dp1Yey, Dp1Tyb and Dp9Tyb models carry an additional copy of APP/App.

Figure 2
Schematic illustration of DS mouse models

The regions of Mmu10 (purple), Mmu17 (orange) and Mmu16 (blue) that are homologous with Hsa21 (long arm) as indicated. The content of the transchromosome 21 in the Tc1 and TcMAC21 models with deletions and key rearrangements as indicated. The Tc1 mouse model has a human centromere (red circle). The TcMAC21, Ts65Dn and Ts66Yah have mouse centromeres (blue circle). The region Mmu16 with an additional copy in the Ts65Dn, Ts66Yah, Dp1Yey, Dp1Tyb, Dp2Tyb, Dp3Tyb and Dp9Tyb as indicated. The duplication of Mmu17 in the Dp(17)3Yey and the duplication of Mmu10 in Dp(10)2Yey as shown. The approximate human APP gene position is shown in bold, the TcMAC21, Ts65Dn, Ts66Yah, Dp1Yey, Dp1Tyb and Dp9Tyb models carry an additional copy of APP/App.

Close modal

One of the first mouse models of DS was the Ts65Dn [72] which has a partial extra copy of Mmu16 and is trisomic for approximately 55% of Hsa21 orthologous genes [73,74]. Ts65Dn mice exhibit learning impairment, locomotor hyperactivity, neurodegeneration and neuroinflammation [74,75], representing a number of the features of DS and AD. Using the Ts65Dn, Salehi et al. found that an increased level of App contributes to cholinergic neurodegeneration in the basal forebrain by disrupting NGF transport, providing insight into this feature of DS-AD [76]. Similarly, Garcia-Cerro et al. used the Ts65Dn to demonstrate the role of three copies of Dyrk1A in modulation of APP/Aβ biology [53] and Yin et al. used a pharmacological approach, targeting the kinase, to investigate changes of Tau biology in the model [77]. Moreover, use of an anti-Aβ vaccine in the Ts65Dn model alleviated some DS-AD-related phenotypes, demonstrating the importance of the peptide in disease mechanism [78]. The Ts65Dn model carries extra copies of some genes that are not orthologues of Hsa21 genes [73] and phenotypic drift has occurred in the mouse likely because of its complex genetic background limiting the utility of this model for future research [79].

More recently, a series of mouse models with extra copies of Mmu10, Mmu16 and Mmu17 genes, that are orthologous with Hsa21 have been generated including; Dp1Tyb, Dp2Tyb, Dp3Tyb and the Dp1Yey; Dp2Yey; Dp3Yey known as the DP16/10/17 ‘triple’ mouse model [80–83]. A recent study by Tosh et al. used segmental duplication mouse models (Dp2Tyb, Dp3Tyb, Dp2Yey and Dp3Yey) to understand which regions of Hsa21 can modulate Aβ aggregation [84]. The study identified that an extra copy of the genes located between Mir802 and Zbtb21 was sufficient to increase Aβ aggregation in vivo. However, these models lack some Hsa21 orthologues and cannot fully recapitulate trisomy of Hsa21 [84]. Moreover, Aβ plaques or aggregates do not form in the brains of models which carry an additional copy of the mouse App gene [75,81], likely because of differences in the biology of mouse and human APP/Aβ caused by key differences in the amino acid sequence between the species. Indeed, partial humanisation of mouse and rat App using knock-in approaches lead to a closer recapitulation of AD biology [85,86], and in the future such approaches may also lead to improved DS-AD rodent models.

The Tc1 ‘humanised’ transchromosomic mouse [formally called Tc(Hsa21)1TybEmcf], that carries an extra copy of approximately 75% of Hsa21 genes, was published in 2005 [87,88]. Tc1 mice show human DS-related defects in synaptic plasticity, cerebellar granule neurons and altered heart development [88]. Importantly, this model does not carry an extra copy of APP due to a rearrangement within the transchromosome [52,87], making Tc1 a useful tool for studying the role of other Hsa21 genes, independently of the triplication of APP, in the pathogenesis of AD. Using this approach Wiseman et al. demonstrated that Hsa21 genes other than APP increase Aβ deposition and exacerbate AD-related cognitive deficits [89]. However, during mouse development, random loss of the additional chromosome leads to mosaicism, limiting the ability to correlate genotype and phenotype in this system [88,90]. This model also lacks an additional copy of ∼25% of Hsa21 genes, such that it cannot be used to study the role of these missing genes in DS-AD [71,87].

Recently, a non-mosaic, transchromic DS mouse model, TcMAC21, was generated by cloning the long arm of Hsa21 as a mouse artificial chromosome [91]. TcMAC21 manifests DS-related features such as defects in memory, learning and synaptic plasticity, heart and craniofacial development as well as haematological abnormalities [91], making it by far the most genetically complete DS mouse model. Of note, TcMAC21 has elevated APP protein in the brain, but despite carrying an additional copy of human APP, Aβ plaques are not detected in the model [91], consistent with previous reports that humanisation of App is not sufficient to cause substantial Aβ accumulation in mice [92]. Further characterisation of this line and crossing it with mouse models of AD pathology will be needed to study plaque-associated DS-AD phenotypes.

Although DS mouse models have provided many insights into the causation and pathophysiology of both DS and AD, they are unable to fully reflect the human disorder because of the complex nature of genetic, transcriptional and translational regulation of human biology as well as the physiological and developmental differences between mouse and human [93–97]. In particular, comparative studies have indicated differences in neurotransmitter mechanisms between mouse and humans [98], and that some AD-specific patterns of gene expression are not recapitulated in the mouse [99], despite an overall good conservation of cell type. Moreover, differences between human and mouse astrocyte and microglia biology [99,100] may have particular implications for the modelling of neurodegenerative disease. Thus, although many aspects of DS and AD biology can be effectively modelled in mouse, additional research tools that capture key aspects of human biology that are not reproduced in rodents are also required to undertake research in these important areas.

Uses and limitations of human tissue in DS-AD studies

Human tissue from individuals with DS and AD has long been an important source for immunohistochemical, biochemical and, more recently, transcriptomic analysis providing information about DS-AD-associated pathological changes. In the last decade, sequencing and genetics-based studies have elucidated the effects of full or partial copy of chromosome 21 (trisomy 21) on brain development [10,58,101,102], as well as AD-related pathology.

Histology and biochemistry of AD-related phenotypes in DS

By studying post-mortem brain samples from individuals with DS across the lifespan, the pattern of Aβ plaque and NFTs formation has been determined to be broadly similar to that which occurs in AD, albeit commencing several decades earlier [103–107]. Aβ deposition is first seen in the parahippocampal gyrus in children with DS [36]. Loss of neurons in the entorhinal cortex occurs in both DS-AD and AD [108,109]. Coskun et al. show that mutations in mitochondrial DNA accumulate with age and are increased in DS-AD brains compared with age-matched controls [110] consistent with reports from AD in the general population [110,111]. Wilcock et al. analysed the expression of microglia markers in DS, DS-AD, and sAD tissue [112], revealing that elevated neuroinflammation occurs in the brains of people who have DS and unique neuroinflammatory phenotypes and microglia activation states occur in the DS-AD brain [112]. Additional studies have supported this seminal finding, showing differences in microglia morphology and cytokine profiles in the brains of people who have DS and DS-AD [113,114]. Notably altered cytokine changes predict cognitive decline DS-AD [115], consistent with reports of microglia activation correlating with increased tau across Braak stages in AD [116]. Further studies are needed to gain a better understanding of the contribution of different brain cell types to DS-AD pathology and cognitive decline.

Transcriptomic studies to elucidate mechanism

The expression of genes throughout the genome is altered in the brain of people who have DS [58,101,102,117–121]. Gene expression profiling of foetus through adult post-mortem DS tissue has revealed that many, but not all, Hsa21 genes are up-regulated [58,101,102,117–121]. While triplication of APP is thought to be a main driver of DS-AD, Lockstone et al. found no evidence of increased APP abundance in the brain of adults who had DS [58]. In contrast, more recent studies have shown robust up-regulation of APP transcript and protein in the brains of individuals with DS and DS-AD [122,123]. The expression of other Hsa21 genes, including DYRK1A, ADAMTS1, BACE2, RCAN1, and non-Hsa21 genes of interest, including APOE and NOTCH2, is also increased in the brains of adults who have DS [58]. Using single-nucleus RNA-sequencing technology, Palmer et al. carried out a transcriptomics study in post-mortem prefrontal cortex from individuals with DS and euploid controls [123]. Consistent with recent histological and biochemical studies [113,114], this showed changes to microglia biology in both young and middle-aged adults who had DS and suggested a significant change in the ratio of inhibitory and excitatory neurons caused by trisomy of Hsa21 [123]. Further comparative single-nuclei RNA-sequencing studies of tissues from individuals who have DS and DS-AD (and equivalent tissues from the general population with and without AD) will provide critical new insights into how neurodevelopment and neurodegeneration are altered by trisomy of chromosome 21.

Challenges and future approaches

Despite the significant information provided by studies of human post-mortem tissues, this research approach has a number of limitations. Although post-mortem tissue is typically matched by age, sex and post-mortem interval, it is not possible to account for all environmental differences that may affect phenotypes of interest. In addition, technical differences, such as fixation, method of processing the tissue or freezing the tissue, can affect results, making it difficult to compare findings from different studies and material sourced from different brain banks. Limited information on cellular processes can be obtained using post-mortem samples, and it is highly challenging to test molecular and cellular hypotheses as these provide information only at a static timepoint. Moreover, it is still challenging to obtain sufficient samples, both because of ethical constraints (such as ensuring appropriate informed consent from people who have an intellectual disability) and historical issues with accurate clinical diagnosis of dementia and mild cognitive impairment (MCI) in people with DS [124]. In particular, obtaining brain material from adults with DS that have not yet developed AD pathology is highly challenging because of the early development of pathology and can hamper adequate statistical power for many research questions. In 2013, The Academy of Medical Sciences released a report calling for increased collection of tissue at international biobanks [125]. Lawrence et al. surveyed U.K. researchers and determined their motivation for choice of tissue was availability of clinical data as well as sourcing from local tissue banks [124]. Further tissue banking from individuals who have DS or DS-AD who have undergone clinical phenotyping during their lifetime will help alleviate limitations of access to tissue.

Cellular models can be used to address the limitations of animal preclinical models and human tissue studies, facilitating hypothesis-testing in a genetically and physiologically relevant system. Immortalised human cell lines and cells derived from affected individuals are commonly used to model and study cellular and molecular mechanisms in disorders and diseases, including DS and AD (Table 1). Human brain microvascular endothelial cells (hBMECs), human cerebral microvascular endothelial cells (hCMECs), human neuroblastoma cells (SHSY-5Y, SK-N-MC), human embryonic kidney cells (HEK293), human teratocarcinoma cells (NTera 2 or NT2/D1) and human lung cancer cells (CALU-3) are among the human cell lines used to screen potential therapeutics and have been valuable in understanding how overexpression of Hsa21 genes affects proliferation, differentiation, oxidative stress, Aβ accumulation, tau pathology and cell death in both DS and AD [126–141].

Table 1
Cellular Models used in DS and DS-AD research
Cell line/modelSourceUseReferences
hBMECs Human brain microvascular endothelial cells Mimic the BBB [134,135,38
hCMECs Human cerebral microvascular endothelial cells Mimic the BBB [136,137
SHSY-5Y Human neuroblastoma; subcloned from SK-N-MC cells Neural-like [127–129,132,137,139,140
SK-N-MC Human neuroblastoma Neural-like [138
HEK293 Human embryonic kidney cell 293 Fundamental biological processes [130,131
NTera or NT2/D1 Human teratocarcinoma Resemble neural precursor cells [133
CALU-3 Human lung adenocarcinoma Mimic the nasal–brain barrier [141
Primary Cultures Fibroblasts, astrocytes, neurons and neural stem/progenitor cells Individual specific and disease relevant [142–155
hESCs Human embryonic stem cells derived from blastocysts Differentiate into cell types of interest; maintain genetic background of donor [169–171
iPSCs Induced pluripotent stem cells reprogrammed from somatic cells Differentiate into cell types of interest; maintain genetic background of donor [55,180–231,234–242
Organoids iPSC-derived 3D model 3D culture; differentiate into cell types of interest; maintain genetic background of donor [55,204,208,212,244,246–250
Induced neurons (iNs) iPSCs and somatic cells directly reprogrammed to neurons Retain age-markers and genetic background of donor [196,272–275
Cell line/modelSourceUseReferences
hBMECs Human brain microvascular endothelial cells Mimic the BBB [134,135,38
hCMECs Human cerebral microvascular endothelial cells Mimic the BBB [136,137
SHSY-5Y Human neuroblastoma; subcloned from SK-N-MC cells Neural-like [127–129,132,137,139,140
SK-N-MC Human neuroblastoma Neural-like [138
HEK293 Human embryonic kidney cell 293 Fundamental biological processes [130,131
NTera or NT2/D1 Human teratocarcinoma Resemble neural precursor cells [133
CALU-3 Human lung adenocarcinoma Mimic the nasal–brain barrier [141
Primary Cultures Fibroblasts, astrocytes, neurons and neural stem/progenitor cells Individual specific and disease relevant [142–155
hESCs Human embryonic stem cells derived from blastocysts Differentiate into cell types of interest; maintain genetic background of donor [169–171
iPSCs Induced pluripotent stem cells reprogrammed from somatic cells Differentiate into cell types of interest; maintain genetic background of donor [55,180–231,234–242
Organoids iPSC-derived 3D model 3D culture; differentiate into cell types of interest; maintain genetic background of donor [55,204,208,212,244,246–250
Induced neurons (iNs) iPSCs and somatic cells directly reprogrammed to neurons Retain age-markers and genetic background of donor [196,272–275

A reduction in the GABAA α3 subunit was detected in the hippocampus of DS foetal tissue [127]. To understand this feature, SH-SY5Y cells, which have neural origins, were treated with Aβ leading to a reduction in the GABAA α3 subunit, suggesting that Aβ may play a role in regulating GABAA receptor subunits [127]. Similarly, Krishtal et al. used SH-SY5Y cells to show that Aβ treatment caused neurite abnormalities, activated caspases, and caused cell death [128]. Moreover, increased APP expression in SH-SY5Y cells led to enhanced susceptibility to oxidative stress and cell death [129]. SH-SY5Y cells have also been used to investigate the role of vitamin A in neural differentiation because vitamin A deficiency is associated with AD and DS and induces neural differentiation by regulating mitochondrial morphology and function [139]. SH-SY5Y cells used to study RCAN1 and oxidative stress revealed that inhibition of RCAN1 reduces oxidative stress and apoptosis [140].

Non-neural HEK293 cells overexpressing MAPT formed pTau aggregates, which can be rescued by inhibition of kinase, glycogen synthase kinase 3 (GSK3), implicating GSK3 in the formation of pTau [130]. Notable changes in GSK3 activity have been reported in the Tc1 mouse models [52]. HEK293 cells overexpressing DYRK1A have hyperphosphorylated acetyl transferase, p300, and CREB-binding protein (CBP), revealing that DYRK1A may play a role in regulating enhancer activity and gene expression [131]. DYRK1A overexpression in SH-SY5Y cells reduced proliferation, and the sustained overexpression-induced cell cycle exit and premature neuronal differentiation, defects consistent with those seen in other trisomy 21 cellular models [132]. hBMECs and hCMECs are used to mimic the blood–brain barrier (BBB) and have been used as a model to study the BBB permeability to Aβ, BBB dysfunction and neuroinflammation, and to test uptake of potential AD therapeutics [134–138]. Quercetin, a potential AD therapy with low BBB permeability, was encased in liposomes with RMP-7 and lactoferrin. The liposome construct was permeable to the hBMEC BBB model, and Quercetin alleviated Aβ neurotoxicity in SK-N-MC cells [138]. Similar approaches may be used to understand how trisomy 21 impacts the BBB in DS-AD.

In summary, while these immortalised cells can easily be cultured and manipulated to study cellular defects that may be altered in DS and AD, these models do not carry trisomy 21 but only alter one or a few genes of interest, thus limiting them from fully recapitulating DS-AD biology.

Cells derived from individuals with DS

Primary cell cultures of fibroblasts, neurons, astrocytes, and neural progenitor/stem cells derived from tissue of individuals who have DS, retain trisomy 21 and have revealed phenotypes associated with neurodegeneration, cell stress, and AD development.

Proteomics and transcriptomics of trisomy 21 primary fibroblasts have shown that Hsa21-encoded mRNAs and proteins are increased an average of approximately 1.5-fold and expression of other non-Hsa21 gene products is also altered, thus modelling a key aspect of DS biology [142]. Aneuploidy-associated stress response in cells leads to impaired cell proliferation, mitochondrial dysfunction, increased ROS, disrupted protein homoeostasis, trafficking deficits, accumulation of protein aggregates, and premature senescence in these cells, thus providing a system in which this key DS-AD relevant biology can be understood and potential treatments investigated [142–149].

Primary neurons and astrocytes can be derived from post-mortem foetal brain tissue and those from DS show increased ROS and undergo apoptosis compared with control cells [150] as well as dysfunctional mitochondria and altered processing of APP, leading to accumulation of insoluble Aβ [151]. With the capability to be differentiated into specific neural subtypes and glial cells, foetal tissue-derived neural stem cells (NSCs) can be used to study developmentally relevant disease mechanisms and pathology, which may overlap with neurodegenerative mechanisms. For example, altered synaptic pruning pathways impact both development and neuron degeneration in AD and DS-AD [152]. Trisomy 21 cultures reveal aberrant development of DS neurons, which may play a role in susceptibility to AD pathology later in life [14,153–155].

With the ability to be differentiated into many disease-relevant cells, human pluripotent stem cells (PSCs) are unmatched in their ability to model diseases and can also be used as a source of human cells for testing of therapeutics [156–167] (Figure 3). Human embryonic stem cells (hESCs) were successfully derived and cultured from human blastocysts in 1998 [168]. hESCs have since been derived from early embryos with aneuploidies, including trisomy 21 [169–171] and have developmental defects, including a reduction in pluripotency regulators leading to premature neuronal differentiation and increased cell death, consistent with mechanisms shown in other trisomy cell models as well as phenotypes seen in individuals with DS [169,170,172].

Schematic illustration of DS-AD cell models

Figure 3
Schematic illustration of DS-AD cell models

Patient-derived hESCs or hiPSCs are first patterned toward NSCs. They are then differentiated into neural progenitor cells and further differentiated into different cell types (astrocytes, neurons, and oligodendrocytes). Induced neurons skip progenitor stages by directly reprograming somatic cells into neurons. These new techniques and models are enhancing the research of DS-AD and have the potential for developing efficient treatments. Created with BioRender.com.

Figure 3
Schematic illustration of DS-AD cell models

Patient-derived hESCs or hiPSCs are first patterned toward NSCs. They are then differentiated into neural progenitor cells and further differentiated into different cell types (astrocytes, neurons, and oligodendrocytes). Induced neurons skip progenitor stages by directly reprograming somatic cells into neurons. These new techniques and models are enhancing the research of DS-AD and have the potential for developing efficient treatments. Created with BioRender.com.

Close modal

The use of hESCs in research is ethically controversial since they are derived from an early-stage human embryo [173–175]. Further, access to embryos with trisomy 21 is difficult, such that only limited DS and DS-AD research has been undertaken using hESCs. As an alternative, human somatic cells can be reprogrammed by introducing specific transcription factors (Oct3/4, Sox2, c-Myc, and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28) that return the somatic cells to an undifferentiated, hESC-like state [176–179]. These induced pluripotent stem cells (iPSCs) have become an invaluable resource in research to model AD, DS, and DS-AD [180–185].

In 2011, iPSCs were first derived from individuals with autosomal-dominant, early-onset fAD caused by mutations in PSEN1 and PSEN2 [186] and subsequently from fAD individuals with a duplication of APP and individuals with sAD [187]. Neurons differentiated from these iPSCs recapitulate AD pathogenic features such as accumulation of Aβ [188,189] and increased pTau and GSK-3β validating these cells as an AD model [186,187]. For example, basal forebrain cholinergic neurons (BFCNs) are prone to degeneration in both DS and AD and have been differentiated from AD iPSCs to identify underlying cellular and molecular mechanisms of their vulnerability [190–192]. AD iPSCs have been used to understand the roles of AD-risk genes and the underlying mechanisms contributing to the onset and progression of the disease [193–201].

While these models have contributed significant knowledge of the pathophysiological mechanisms of the disease, a major limitation with 2D models is the inability to recapitulate all aspects of disease pathogenesis. Notably, these in vitro systems do not facilitate the development of extracellular Aβ plaques. Moreover, they do not fully replicate all of the age-dependent pathological features, and they also lack the complex interaction of multiple cell types, which are suggested to have a major role in AD development [202]. While AD iPSCs have been used extensively to elucidate underlying mechanisms of the disease, Israel et al. found iPSC lines generated from individuals with sAD and fAD with an APP duplication did not all display the same phenotypes [187]. Similarly, Kondo et al. found that seven AD iPSC lines did not recapitulate the same phenotypes [189], illustrating the underlying variability in this model system likely because of genetic differences between individuals.

iPSCs were first derived from cells from two individuals with DS in 2008 and retained trisomy 21, validating iPSC technology as a tool to study DS [203]. Subsequent studies generated trisomy iPSCs from both banked cells and directly from donor samples [55,185,203–231]. In early iPSC studies, disorder-specific cells were typically compared with an age- and sex-matched control. Inherent genetic human variation between controls and disorder made it hard to distinguish differences caused by the disorder from underlying genetic differences between individuals. The generation of isogenic pairs of trisomy and euploid iPSCs from mosaic trisomy 21 cells addressed this limitation [218,226]. However, mosaicism is rare and occurs in 2–4% of individuals with DS [232,233], limiting the generation of isogenic iPSC pairs by this approach. Another strategy to generate DS and control lines with limited genetic variability is to derive iPSCs from monozygotic twins discordant for DS [220,234]. Silencing of one copy of chromosome 21 in trisomy 21 iPSCs can also be accomplished [221,229]. One strategy is to co-opt function of XIST, the X-inactivation gene, in the DYRK1A locus on chromosome 21, allowing the XIST non-coding RNA to coat the chromosome and silence it [221]. When one copy of chromosome 21 was silenced in trisomy 21 iPSCs, proliferation and neural rosette formation defects were rescued [221]. These strategies provide models to study gene expression changes without confounds of genetic and epigenetic background.

Although iPSCs can be differentiated into various cell types, much of the trisomy 21 iPSC research has generated cells of the nervous system to investigate underlying mechanisms of intellectual disability. Trisomy 21 iPSC-derived neural progenitor cells (NPCs) and neurons have revealed deficits in cellular and molecular processes of neural development and maturation, as a result of extra copies of Hsa21 genes. Trisomy 21 NPCs have deficits in proliferation, differentiation, and migration [204,205,220–223,229]. Trisomy 21 neurons differentiated from NPCs have fewer processes, a reduced area, increased vulnerability to oxidative stress, and synaptic defects [213,224–226]. Furthermore, trisomy 21 NPCs differentiated into fewer neurons but more astrocytes and oligodendrocytes compared with controls, suggesting deficits in neurogenesis and a shift in the timing of the neuron–glial switch [154,219]. Compared with isogenic controls, trisomy 21 cells have decreased numbers of synapses, exhibit slower proliferation of neural progenitors, develop more double-stranded DNA breaks, and have increased Aβ levels, number of mitochondria, and markers of oxidative stress [218,226]. Transcriptomic analysis of iPSC-derived cells reveals that an additional copy of Hsa21 causes the differential expression of genes throughout the genome. Pathway analysis indicates changes in embryonic development, organ development, nervous system development, and cell adhesion along with reduced proliferation and increased apoptosis modelled in this system [220,226,229,234,235].

Trisomy 21 iPSC models have also been used to study the early pathogenic phenotypes associated with AD [55,217,218,224,236–240]. Trisomy 21 iPSC-derived neurons and hESC-derived neurons, develop AD pathology including Aβ and pTau accumulation [187,189,224,241,242]. Trisomy 21 iPSC-derived cortical neurons have increased insoluble Aβ, accumulate amyloid deposits [217,224], have increased hyperphosphorylated tau, and show that tau dissociates from axonal microtubules and relocalises to the cell body and dendrites, which are key pathological hallmarks of AD [217,224]. Ovchinnikov et al. used CRISPR methodology to delete the additional copy of APP in Trisomy 21 iPSCs and to up-regulate APP in euploid cells, showing the additional copy of APP is responsible for increased Aβ and the altered Aβ42/40 ratio that occurs in this model but is not responsible for tau-related phenotypes or increased apoptosis [213]. While iPSCs have been valuable in understanding DS and AD, neurons differentiated from iPSCs are functionally immature and do not retain age markers, limiting their use as a model for age-related aspects of AD [243].

Three-dimensional cell cultures

While monolayer cultures provide insight into disease onset, progression, and drug discovery, they fail to recapitulate the dimensionality and complex circuitry of the brain. Three-dimensional organoid cultures derived from PSCs better model the brain in vitro and have been used to model AD phenotypes. With the overexpression of APP or PSEN1 with fAD mutations, organoids accumulate Aβ plaques and aggregates of phosphorylated tau along with revealing that GSK3 regulates Aβ-mediated tau phosphorylation [244]. 3D organoid cultures of neurons respond to the addition of exogenous Aβ whereas 2D neuron cultures do not [245]. Kim et al. report Aβ aggregation after 6 weeks of differentiation and tau pathology after 10–14 weeks using organoids that overexpress APP or PSEN1 with fAD mutations [246]. Using fAD patient-derived iPSCs with an APP duplication or mutation in PSEN1, Raja et al. found Aβ aggregation, hyperphosphorylated tau, and endosome abnormalities occur in an age-dependent manner in self-organising organoids [247]. To elucidate effects of glial cell types, Park et al. used a 3D triculture of AD-derived neurons and astrocytes with adult microglia in which Aβ and pTau accumulate and there is neuroinflammatory activity [248]. Thus, these 3D models exhibit features of AD that 2D cultures cannot.

Cerebral organoids generated from trisomy 21 iPSCs are smaller in size with decreased proliferation and fewer cortical neurons [55,204]. The DSCAM/PAK1 pathway, which regulates proliferation and is more active in DS, can be regulated with CRISPR interference (CRISPRi) and help normalise the size of the organoids [204]. Epigenetic ageing measured by Horvath clock DNA methylation is accelerated in DS organoids [249], concordant with the accelerated ageing hallmarks observed in DS tissue [250]. Recent work from Xu et al., indicated that the Hsa21-encoded OLIG2 transcription factor causes an overproduction of progenitor cells and GABAergic interneurons [208]. Organoids will likely be more prevalent for assessing neurodevelopmental defects in DS in the future.

Recently, DS organoids have been used to study DS-AD. Organoids generated from iPSCs with fAD mutations or trisomy 21 accumulate structures similar to Aβ plaques and NFTs [212]. Similarly, Alić et al. reported Aβ deposits, hyperphosphorylated tau, and premature neuron loss in organoids derived from trisomy 21 iPSCs [55]. 3D organoids provide a better structural model of the brain and result in more mature cells, potentially making them a better model for DS-AD.

Induced neurons

A key limitation of iPSC-derived cells is that they are developmentally immature, presenting a challenge to reflect age-dependent pathological features when modelling age-related diseases, such as AD. To better model age-related diseases, induced neurons (iNs) are directly reprogrammed into neurons from an affected individual’s somatic cells or iPSCs, skipping the NPCs stage [251,252]. Different neuron subtypes, including dopaminergic, motor, excitatory, inhibitory, serotonergic, cholinergic, and peripheral sensory neurons [236,251,253–265] induced by overexpressing specific combinations of transcription factors can currently be generated [266]. iNs that are converted directly from somatic cells maintain the individual’s epigenetic background at the time of cell collection, making them a valuable model for studying age-related neurodegeneration [267–271]. Mertens et al. report that AD iNs retain age markers of the donor individual, have a down-regulation of mature neuronal markers, and have up-regulation of immature neuron and progenitor-like pathways [196]. AD iPSC-derived neurons had no significant disease-related transcriptome signatures [196], corroborating earlier findings that excitatory iNs retain age-related signatures compared with iPSC-derived neurons from the same individuals [272]. Wang et al. used iNs for high-throughput screening to identify potential a drug candidate for AD that would lower tau [273]. Trisomy 21 iNs have the characteristic overexpression of Hsa21 genes at both the RNA and protein level, along with increased Aβ and pTau, increased synaptic vesicle release, and dysregulation of axonal transport [274]. Trisomy 21 iNs also show aneuploidy-associated stress response, dysregulated protein homoeostasis, up-regulation of the endoplasmic reticulum stress pathway, and increased cell death [275]. Treatment of iNs with 4-phenylbutyrate decreased protein aggregates and reduced cell apoptosis in the Ts21 iNs, suggesting that the aneuploidy stress may be a target for neurodegeneration in DS and DS-AD [275]. As a relatively new model, iNs have thus far yielded limited data on disease onset and progression in AD and DS-AD. Moreover, currently isogenic controls for Trisomy 21 iNs are lacking, and further refinement of this technology will ensure its utility to study DS and DS-AD.

Mouse – iPSC chimera

Mouse – iPSC chimeric models have been used to study both DS and AD fundamental mechanisms. This approach permits the long-term growth of human cells and favours the development of complex synaptic architecture. Moreover, this combinatorial system negates the limitation of non-physiological oxygen concentrations in in vitro cellular systems while permitting the modelling of human-specific biology. Typically, iPSC-derived precursor cells are injected into the brain of recipient animals, but recently a more mature cell population isolated from organoids has been used [208]. In some systems Rag2−/− and/or Il2rγ−/− mice are used to facilitate long-term maintenance of engraftment of cells by suppression of the recipient’s natural immune response to the introduced human cells, a technique first developed for hematopoietic system chimeras [276].

This chimeric approach has been used to demonstrate trisomy 21-specific changes in dendritic stability and neuronal activity [211]. Human neuronal engraftment was also used to study the role of the Hsa21 gene OLIG2 in trisomy 21-associated learning and memory deficits via the gene’s role in GABAergic neuronal development, as had been previously reported in mice [208,277]. In AD research, a similar approach was used to understand how human neurons respond to the accumulation of Aβ [278]. In more recent years these techniques have been developed to permit the engraftment of other cell types, most notably microglia, addressing limitations of current mouse models to recapitulate key features of AD neuroinflammation. Successful long-term engraftment of this cell type, necessary to understand ageing effects, requires that the recipient mouse is both immunocompromised (Rag2−/−Il2rγ−/−) and also expresses human CSF1 (macrophage differentiation cytokine) [279]. This approach has been used to identify species-specific differences in the response of microglia to Aβ and further elucidate the role of the AD-risk gene TREM2 [279].

Notably, these model systems are highly complex and the proliferation, survival, and differentiation of human cells after injection can vary significantly between studies with each human graft containing a different mixture of cell types [280,281]. Moreover, typically in these systems, the mouse cells are not fully replaced by the engrafted human cells which only compose a small fraction of the total brain. Mosaicism may limit the manifestation and interpretation of phenotypes in these models. Depletion of the key cell type of interest in the recipient animal could be used to mitigate this limitation. For example, diphtheria toxin receptor (DTR) expression in the lineage of interest could be utilized to ablate the cells and create a niche which can then be populated by engrafted iPSCs [282].

iPSCs use in drug screening

Although numerous promising results of AD treatment have been obtained in animal models, there are very few medications available to treat patients, and those that are available have poor efficacy. For example, the efficacy of the recently FDA-approved immunotherapy drug aducanumab that targets Aβ is questionable [283,284]. Progress using animal model-driven drug screening approaches is very slow, with large failure rates, reflecting the limitations of these models. Primary human cells can therefore be an attractive option for drug screening [285,286]. However, due to the post-mitotic nature of many types of primary cells such as neurons and invasive procedures of cell extraction, accessing and obtaining enough primary cells can be challenging [287]. Cells differentiated from iPSCs derived from patients are a useful model for drug screening because of the patient-specific genetic background, ability to engineer isogenic controls, and ability to produce large numbers of cells [287]. Using cortical neurons differentiated from AD patient iPSCs, Kondo et al. conducted an anti-Aβ drug screen and identified a combination of compounds that may be useful for treating the earliest stages of AD [288]. More recently, through deleting one copy of Hsa21 gene BACE2 by CRISPR-Cas9 in AD pathology-free cerebral organoids differentiated from human trisomy 21 iPSCs, Alić et al. reported an induction of AD pathology, demonstrating that BACE2 has a protective role against AD, which could be a therapeutic target [55]. These findings also indicate that DS organoids can be a useful tool for hypothesis-free drug screening [55].

Although the use of iPSCs in drug screening has begun to identify potential drugs targeting AD, limitations of this model should not be ignored. For instance, since iPSCs are reprogrammed cells, they are epigenetically and phenotypically young and unable to well model all aspects of age-related neurodegenerative diseases, such as LOAD [287,289]. Moreover, maintenance and differentiation of iPSCs as well as validating cells differentiated from iPSCs is costly and requires a significant amount of effort [290]. Lastly, culture conditions and passage number can significantly affect phenotype, data consistency, and reproducibility [291].

Stem cell therapies

With advancements in stem cell culture, human stem cells have become a focus of potential transplantation therapies for neurological disorders [292]. NSCs from foetal tissue transplanted into an AD mouse model reduced amyloid plaques via recruitment of activated microglia and improved performance on hippocampus-related memory tasks [293]. hESCs differentiated into BFCNs have been shown to ameliorate memory and learning deficits when transplanted into AD mouse models, showing that this subset of neurons plays a critical role and could be the target of potential therapeutics for neurological disorders, including DS and AD [294–296].

While transplants have been successful in mouse models and have provided insight into disease mechanisms, there is no evidence that current transplants are beneficial in humans. Lacking online regulation, clinics are marketing stem cell therapies with remarkable outcomes that lack results and evidence from well-controlled trials [297]. Recently, a clinic in India claimed to have successfully used stem cell transplants to treat DS in up to 14 individuals [298]. However, it is currently unknown if or how stem cells can be used to treat the genetic disorder, making it unlikely that this treatment will be beneficial but will likely put these individuals at risk of transplant-related side effects [298]. In another report, doctors injected hESCs into a child with DS, who presented with deficits in speech, motor skills and had delayed developmental milestones [299]. The report claims the child had improvements in understanding, recognition, and muscle tone and that the hESCs could have induced normal neurogenesis in the brain improving the deficits resulting from DS. However, there were no controls used in this study and no data to suggest the correction of neurogenesis [299]. Advertisements and studies claiming beneficial results of stem cell therapies can mislead individuals and their families looking for treatment options. Until we have a better understanding of the underlying mechanisms of these conditions and how to correct these alterations, cell transplants are not a beneficial treatment for DS or DS-AD in humans.

Less than two decades since human iPSCs were first introduced [176–178,203], the field of disease modelling has been revolutionised and is fast developing. Compared with other preclinical models such as mouse, patient-derived iPSCs have a number of advantages for the study of human disease mechanisms. Most importantly, compared with animal studies these human-derived systems conserve fundamental human genetics and biology that may not be recapitulated in preclinical model species (such as mice and rats), thus research either in vitro or in combinatorial chimeric systems is likely to have high translational relevance. Moreover, iPSCs are relatively easy to obtain and have fewer ethical concerns compared with other models, such as foetal tissue, hESCs and animals [300]. Notably, in vitro iPSC research has considerable 3Rs (Replacement, Reduction, and Refinement) benefits and is likely to significantly reduce the number of animals used in medical research but not completely replace the need for in vivo research [301]. In DS-AD research, key applications include the understanding of the role of glial cells in disease pathogenesis, as key aspects of both astrocytes and microglia biology differ between mouse and human. In vitro iPSC and organoid research are also important for the replacement of in vivo research that has a particularly high animal welfare burden, such as the study of hyperexcitability and seizures in DS-AD.

However, due to the immature nature of iPSC-derived cells, it is challenging to reflect age-dependent pathological features when modelling age-related diseases, such as AD. Additionally, the majority of AD iPSC models contain fAD causal mutations which are a relatively rare cause of the disease [302]. Moreover, although the problem of heterogeneity between disease modelling and healthy control iPSCs has been largely addressed by generating isogenic controls through genome editing such as by the use of CRISPR-Cas9 technology, off-target effects of gene editing and the key role of epigenetic variations should not be ignored [303]. Despite the considerable achievements in DS-AD modelling using iPSCs, this new model of disease is still in its early stages and will have numerous obstacles to overcome. In the foreseeable future, exploring mechanisms of DS-AD will be dependent on both animal and cell models. Nevertheless, with the continuous development of techniques such as genome editing, mouse-iPSC chimeras, 3D cell culture, and multiomics, iPSC-based studies will shed more light on discovering the pathomechanisms of DS-AD and provide an efficient and reliable platform for translational medicine.

This work was supported by the U.K. Dementia Research Institute, which receives its funding from DRI Ltd, funded by the U.K. Medical Research Council, Alzheimer’s Society and Alzheimer’s Research U.K. [grant number UKDRI-1014 (to F.K.W)]; the Alzheimer’s Research U.K. Senior Research Fellowship [grant number ARUK-SRF2018A-001 (to F.K.W)]; the Royal Society Research Grant [grant number RGS\R1\211219 (to F.K.W)]; the Wisconsin Partnership Program New Investigator Program, University of Wisconsin Alzheimer’s Disease Research Center REC Scholar Award (to A.B.); the Jerome LeJeune Foundation [grant number #1910 (to A.B.)]; the National Institute of Child Health and Human Development [grant numbers 1R01HD106197, U54 HD090256, P50HD105353 (to A.B.)]; and the Wisconsin Alumni Research Foundation (to A.B.).

The authors declare that there are no competing interests associated with the manuscript.

Open access for this article was enabled by the participation of MRC Laboratory of Molecular Biology in an all-inclusive Read & Publish agreement with Portland Press and the Biochemical Society under a transformative agreement with JISC.

     
  • AD

    Alzheimer’s disease

  •  
  • ADAMTS1

    ADAM metallopeptidase with thrombospondin type 1 motif 1

  •  
  • APOE

    apolipoprotein E

  •  
  • APP

    amyloid precursor protein

  •  
  • amyloid-β

  •  
  • BACE2

    β-Secretase 2

  •  
  • BBB

    blood–brain barrier

  •  
  • BFCN

    basal forebrain cholinergic neuron

  •  
  • Cas9

    CRISPR-associated protein 9

  •  
  • CRISPR

    clustered regularly interspaced short palindromic repeats

  •  
  • DS

    Down syndrome

  •  
  • DS-AD

    Alzheimer’s disease in Down syndrome

  •  
  • DYRK1A

    dual-specificity tyrosine phosphorylation-regulated kinase 1A

  •  
  • EOAD

    early-onset AD

  •  
  • fAD

    familial Alzheimer’s disease

  •  
  • GSK3

    glycogen synthase kinase 3

  •  
  • hBMEC

    human brain microvascular endothelial cell

  •  
  • hCMEC

    human cerebral microvascular endothelial cell

  •  
  • HEK293

    human embryonic kidney cell

  •  
  • hESC

    human embryonic stem cell

  •  
  • Hsa21

    human chromosome 21

  •  
  • GABA

    gamma-aminobutyric acid

  •  
  • iN

    induced neuron

  •  
  • iPSC

    induced pluripotent stem cell

  •  
  • LOAD

    late-onset AD

  •  
  • MAPT

    microtubule-associated protein tau

  •  
  • NFT

    neurofibrillary tangle

  •  
  • NGF

    nerve growth factor

  •  
  • Mmu

    Mus musculus chromosome

  •  
  • NPC

    neural progenitor cell

  •  
  • NSC

    neural stem cell

  •  
  • PSC

    pluripotent stem cell

  •  
  • PSEN1/2

    presenilin 1/2

  •  
  • sAD

    sporadic AD

  •  
  • Trisomy 21

    full or partial copy of chromosome 21

1.
Lejeune
J.
,
Gauthier
M.
and
Turpin
R.
(
1959
)
Human chromosomes in tissue cultures
.
C. R. Hebd. Seances Acad. Sci.
248
,
602
603
[PubMed]
2.
Lejeune
J.
,
Gautier
M.
and
Turpin
R.
(
1959
)
Study of somatic chromosomes from 9 mongoloid children
.
C. R. Hebd. Seances Acad. Sci.
248
,
1721
1722
[PubMed]
3.
Hassold
T.
and
Hunt
P.
(
2001
)
To err (meiotically) is human: the genesis of human aneuploidy
.
Nat. Rev. Genet.
2
,
280
291
[PubMed]
4.
Fidler
D.J.
and
Nadel
L.
(
2007
)
Education and children with Down syndrome: neuroscience, development, and intervention
.
Ment. Retard. Dev. Disabil. Res. Rev.
13
,
262
271
[PubMed]
5.
Hattori
M.
et al.
(
2000
)
The DNA sequence of human chromosome 21
.
Nature
405
,
311
319
[PubMed]
6.
Dierssen
M.
(
2012
)
Down syndrome: the brain in trisomic mode
.
Nat. Rev. Neurosci.
13
,
844
858
[PubMed]
7.
Antonarakis
S.E.
et al.
(
2020
)
Down syndrome
.
Nat. Rev. Dis. Primers
6
,
9
[PubMed]
8.
Haydar
T.F.
and
Reeves
R.H.
(
2012
)
Trisomy 21 and early brain development
.
Trends Neurosci.
35
,
81
91
[PubMed]
9.
Pinter
J.D.
et al.
(
2001
)
Neuroanatomy of Down’s syndrome: a high-resolution MRI study
.
Am. J. Psychiatry
158
,
1659
1665
[PubMed]
10.
Baburamani
A.A.
et al.
(
2019
)
New approaches to studying early brain development in Down syndrome
.
Dev. Med. Child Neurol.
61
,
867
879
[PubMed]
11.
Guihard-Costa
A.-M.
et al.
(
2006
)
Biometry of face and brain in fetuses with trisomy 21
.
Pediatr. Res.
59
,
33
38
[PubMed]
12.
Kemper
T.L.
(
1991
)
Down Syndrome, in Normal and Altered States of Function
(
Peters
A.
and
Jones
E.G.
, eds), pp.
511
526
,
Springer
,
Boston, MA, U.S.A.
13.
Ross
M.H.
,
Galaburda
A.M.
and
Kemper
T.L.
(
1984
)
Down’s syndrome: is there a decreased population of neurons?
Neurology
34
,
909
916
[PubMed]
14.
Golden
J.A.
and
Hyman
B.T.
(
1994
)
Development of the superior temporal neocortex is anomalous in trisomy 21
.
J. Neuropathol. Exp. Neurol.
53
,
513
520
[PubMed]
15.
Davidoff
L.M.
(
1928
)
The brain in mongolian idiocy: a report of ten cases
.
Arch. Neurol. Psychiatry
20
,
1229
1257
16.
Becker
L.
et al.
(
1991
)
Growth and development of the brain in Down syndrome
.
Prog. Clin. Biol. Res.
373
,
133
152
[PubMed]
17.
Kesslak
J.P.
et al.
(
1994
)
Magnetic resonance imaging analysis of age‐related changes in the brains of individuals with Down’s syndrome
.
Neurology
44
,
1039
1039
[PubMed]
18.
Schmidt-Sidor
B.
et al.
(
1990
)
Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months
.
Clin. Neuropathol.
9
,
181
190
[PubMed]
19.
Wisniewski
K.E.
(
1990
)
Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis
.
Am. J. Med. Genet.
37
,
274
281
20.
Crome
L.S.J.
,
Stern
J.
,
1967
,
Pathology of mental retardation
,
Little, Brown and Company
,
Boston, Mass, USA.
21.
Benda
C.
(
1946
)
Mongolism and cretinism
.
Mongolism and cretinism
,
Grune and Stratton
,
New York, USA.
22.
Colon
E.J.
(
1972
)
The structure of the cerebral cortex in Down’s syndrome: a quantitative analysis
.
Neuropediatrics
3
362
376
24.
Burns
A.
and
Iliffe
S.
(
2009
)
Alzheimer’s disease
.
BMJ
338
,
b158
[PubMed]
25.
Serrano-Pozo
A.
et al.
(
2011
)
Neuropathological alterations in Alzheimer disease
.
Cold Spring Harb. Perspect. Med.
1
, 1-24
[PubMed]
26.
Alzheimer
A.
et al.
(
1995
)
An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”
.
Clin. Anat.
8
,
429
431
[PubMed]
27.
Harman
D.
(
2006
)
Alzheimer’s disease pathogenesis
.
Ann. N.Y. Acad. Sci.
1067
,
454
460
[PubMed]
28.
Sun
X.
,
Chen
W.-D.
and
Wang
Y.-D.
(
2015
)
β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease
.
Front. Pharmacol.
6
, 1-9
29.
Weggen
S.
and
Beher
D.
(
2012
)
Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease
.
Alzheimers Res. Ther.
4
,
9
[PubMed]
30.
Bertram
L.
and
Tanzi
R.E.
(
2019
)
Alzheimer disease risk genes: 29 and counting
.
Nat. Rev. Neurol.
15
,
191
192
[PubMed]
31.
Farrer
L.A.
et al.
(
1997
)
Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis
.
JAMA
278
,
1349
1356
[PubMed]
32.
Harold
D.
et al.
(
2009
)
Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease
.
Nat. Genet.
41
,
1088
1093
[PubMed]
33.
Kunkle
B.W.
et al.
(
2019
)
Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
.
Nat. Genet.
51
,
414
430
[PubMed]
34.
De Strooper
B.
and
Karran
E.
(
2016
)
The cellular phase of Alzheimer’s disease
.
Cell
164
,
603
615
[PubMed]
35.
Karch
C.M.
and
Goate
A.M.
(
2015
)
Alzheimer’s disease risk genes and mechanisms of disease pathogenesis
.
Biol. Psychiatry
77
,
43
51
[PubMed]
36.
Leverenz
J.B.
and
Raskind
M.A.
(
1998
)
Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis
.
Exp. Neurol.
150
,
296
304
[PubMed]
37.
Mann
D.M.
(
1988
)
Alzheimer’s disease and Down’s syndrome
.
Histopathology
13
,
125
137
[PubMed]
38.
Wiseman
F.K.
et al.
(
2015
)
A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome
.
Nat. Rev. Neurosci.
16
,
564
574
[PubMed]
39.
McCarron
M.
et al.
(
2014
)
A prospective 14-year longitudinal follow-up of dementia in persons with Down syndrome
.
J. Intellect. Disabil. Res.
58
,
61
70
[PubMed]
40.
Carmona-Iragui
M.
et al.
(
2021
)
Diagnostic and prognostic performance and longitudinal changes in plasma neurofilament light chain concentrations in adults with Down syndrome: a cohort study
.
Lancet Neurol.
20
,
605
614
[PubMed]
41.
Altuna
M.
,
Gimenez
S.
and
Fortea
J.
(
2021
)
Epilepsy in Down syndrome: a highly prevalent comorbidity
.
J. Clin. Med.
10
, 1-17
42.
Sleegers
K.
et al.
(
2006
)
APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy
.
Brain
129
,
2977
2983
[PubMed]
43.
Rovelet-Lecrux
A.
et al.
(
2006
)
APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy
.
Nat. Genet.
38
,
24
26
[PubMed]
44.
Prasher
V.P.
et al.
(
1998
)
Molecular mapping of Alzheimer-type dementia in Down’s syndrome
.
Ann. Neurol.
43
,
380
383
[PubMed]
45.
Doran
E.
et al.
(
2017
)
Down Syndrome, Partial Trisomy 21, and absence of Alzheimer’s disease: the role of APP
.
J. Alzheimers Dis.
56
,
459
470
[PubMed]
46.
Abrahamson
E.E.
et al.
(
2019
)
Neuropathological correlates of amyloid PET imaging in Down syndrome
.
Dev. Neurobiol.
79
,
750
766
[PubMed]
47.
Hartley
S.L.
et al.
(
2014
)
Cognitive functioning in relation to brain amyloid-beta in healthy adults with Down syndrome
.
Brain
137
,
2556
2563
[PubMed]
48.
Mak
E.
et al.
(
2019
)
Longitudinal trajectories of amyloid deposition, cortical thickness, and tau in Down syndrome: a deep-phenotyping case report
.
Alzheimers Dement. (Amst.)
11
,
654
658
[PubMed]
49.
Zammit
M.D.
et al.
(
2020
)
Amyloid accumulation in Down syndrome measured with amyloid load
.
Alzheimers Dement. (Amst.)
12
,
e12020
[PubMed]
50.
Mann
D.M.A.
et al.
(
2018
)
Patterns and severity of vascular amyloid in Alzheimer’s disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer’s disease
.
Acta Neuropathol.
136
,
569
587
[PubMed]
51.
Woods
Y.L.
et al.
(
2001
)
The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase
.
Biochem. J.
355
,
609
615
[PubMed]
52.
Sheppard
O.
et al.
(
2012
)
Altered regulation of tau phosphorylation in a mouse model of down syndrome aging
.
Neurobiol. Aging
33
,
828.e31
828.e44
[PubMed]
53.
Garcia-Cerro
S.
et al.
(
2017
)
Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer’s disease phenotypes
.
Neurobiol. Dis.
106
,
76
88
[PubMed]
54.
Cossec
J.C.
et al.
(
2012
)
Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes
.
Hum. Mol. Genet.
21
,
3156
3172
[PubMed]
55.
Alić
I.
et al.
(
2021
)
Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
.
Mol. Psychiatry
,
26
,
5766
5788
,
[PubMed]
56.
Yang
D.S.
et al.
(
2011
)
Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits
.
Brain
134
,
258
277
[PubMed]
57.
Wu
Y.
et al.
(
2021
)
The effects of Cstb duplication on APP/amyloid-β pathology and cathepsin B activity in a mouse model
.
PLoS ONE
16
,
e0242236
[PubMed]
58.
Lockstone
H.E.
et al.
(
2007
)
Gene expression profiling in the adult Down syndrome brain
.
Genomics
90
,
647
660
[PubMed]
59.
Bejanin
A.
et al.
(
2021
)
Association of apolipoprotein E ɛ4 allele with clinical and multimodal biomarker changes of Alzheimer disease in adults with Down syndrome
.
JAMA Neurol.
78
,
937
947
[PubMed]
60.
Coppus
A.M.
et al.
(
2008
)
The impact of apolipoprotein E on dementia in persons with Down’s syndrome
.
Neurobiol. Aging
29
,
828
835
[PubMed]
61.
Deb
S.
et al.
(
2000
)
APOE epsilon 4 influences the manifestation of Alzheimer’s disease in adults with Down’s syndrome
.
Br. J. Psychiatry
176
,
468
472
[PubMed]
62.
Hithersay
R.
et al.
(
2019
)
Association of dementia with mortality among adults with Down syndrome older than 35 years
.
JAMA Neurol.
76
,
152
160
[PubMed]
63.
Hyman
B.T.
et al.
(
1995
)
Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome)
.
Proc. Natl. Acad. Sci. U.S.A.
92
,
3586
3590
[PubMed]
64.
Patel
A.
et al.
(
2011
)
Association of variants within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with dementia in Alzheimer’s disease in subjects with Down syndrome
.
Neurosci. Lett.
487
,
144
148
[PubMed]
65.
Prasher
V.P.
et al.
(
2008
)
Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimer’s disease and mortality in persons with Down syndrome
.
Int. J. Geriatr. Psychiatry
23
,
1134
1140
[PubMed]
66.
Silverman
W.P.
et al.
(
2013
)
Intellectual disability, mild cognitive impairment, and risk for dementia
.
J. Policy Pract. Intellect. Disabil.
10
,
245
251
,
[PubMed]
67.
Esquerda-Canals
G.
et al.
(
2017
)
Mouse models of Alzheimer’s disease
.
J. Alzheimers Dis.
57
,
1171
1183
[PubMed]
68.
Friedman
B.A.
et al.
(
2018
)
Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models
.
Cell Rep.
22
,
832
847
[PubMed]
69.
Davisson
M.T.
et al.
(
2001
)
Evolutionary breakpoints on human chromosome 21
.
Genomics
78
,
99
106
[PubMed]
70.
Tybulewicz
V.L.J.
and
Fisher
E.M.C.
(
2006
)
New techniques to understand chromosome dosage: mouse models of aneuploidy
.
Hum. Mol. Genet.
15
,
R103
R109
[PubMed]
71.
Choong
X.Y.
et al.
(
2015
)
Dissecting Alzheimer disease in Down syndrome using mouse models
.
Front. Behav. Neurosci.
9
,
1
24
[PubMed]
72.
Davisson
M.T.
,
Schmidt
C.
and
Akeson
E.C.
(
1990
)
Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome
.
Prog. Clin. Biol. Res.
360
,
263
280
[PubMed]
73.
Duchon
A.
et al.
(
2011
)
Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling Down syndrome
.
Mamm. Genome
22
,
674
684
[PubMed]
74.
Reeves
R.H.
et al.
(
1995
)
A mouse model for Down syndrome exhibits learning and behaviour deficits
.
Nat. Genet.
11
,
177
184
[PubMed]
75.
Holtzman
D.M.
et al.
(
1996
)
Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome
.
Proc. Natl. Acad. Sci. U.S.A.
93
,
13333
13338
[PubMed]
76.
Salehi
A.
et al.
(
2006
)
Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration
.
Neuron
51
,
29
42
[PubMed]
77.
Yin
X.
et al.
(
2017
)
Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice
.
Sci. Rep.
7
,
619
[PubMed]
78.
Belichenko
P.V.
et al.
(
2016
)
An anti-β-amyloid vaccine for treating cognitive deficits in a mouse model of Down syndrome
.
PLoS ONE
11
,
e0152471
[PubMed]
79.
Shaw
P.R.
et al.
(
2020
)
Longitudinal neuroanatomical and behavioral analyses show phenotypic drift and variability in the Ts65Dn mouse model of Down syndrome
.
Dis. Model Mech.
13
,
[PubMed]
80.
Li
Z.
et al.
(
2007
)
Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities
.
Hum. Mol. Genet.
16
,
1359
1366
[PubMed]
81.
Yu
T.
et al.
(
2010
)
A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions
.
Hum. Mol. Genet.
19
,
2780
2791
[PubMed]
82.
Duchon
A.
et al.
(
2008
)
Inducing segmental aneuploid mosaicism in the mouse through targeted asymmetric sister chromatid event of recombination
.
Genetics
180
,
51
59
[PubMed]
83.
Raveau
M.
et al.
(
2012
)
The App-Runx1 region is critical for birth defects and electrocardiographic dysfunctions observed in a Down syndrome mouse model
.
PLoS Genet.
8
,
e1002724
[PubMed]
84.
Tosh
J.L.
et al.
(
2021
)
Genetic dissection of down syndrome-associated alterations in APP/amyloid-β biology using mouse models
.
Sci. Rep.
11
,
5736
[PubMed]
85.
Serneels
L.
et al.
(
2020
)
Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer's disease
.
Mol. Neurodegener.
15
,
60
[PubMed]
86.
Baglietto-Vargas
D.
et al.
(
2021
)
Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer’s disease-like pathology
.
Nat. Commun.
12
,
2421
[PubMed]
87.
Gribble
S.M.
et al.
(
2013
)
Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down Syndrome
.
PLoS ONE
8
,
e60482
[PubMed]
88.
Doherty
A.
et al.
(
2005
)
An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes
.
Science
309
,
2033
[PubMed]
89.
Wiseman
F.K.
et al.
(
2018
)
Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP
.
Brain
141
,
2457
2474
[PubMed]
90.
Roper
R.J.
and
Reeves
R.H.
(
2006
)
Understanding the basis for Down syndrome phenotypes
.
PLoS Genet.
2
,
e50
[PubMed]
91.
Kazuki
Y.
et al.
(
2020
)
A non-mosaic transchromosomic mouse model of Down syndrome carrying the long arm of human chromosome 21
.
eLife
9
,
1
29
[PubMed]
92.
Saito
T.
et al.
(
2014
)
Single App knock-in mouse models of Alzheimer’s disease
.
Nat. Neurosci.
17
,
661
663
[PubMed]
93.
Zhao
X.
and
Bhattacharyya
A.
(
2018
)
Human models are needed for studying human neurodevelopmental disorders
.
Am. J. Hum. Genet.
103
,
829
857
[PubMed]
94.
Drummond
E.
and
Wisniewski
T.
(
2017
)
Alzheimer’s disease: experimental models and reality
.
Acta Neuropathol. (Berl.)
133
,
155
175
95.
Perlman
R.L.
(
2016
)
Mouse models of human disease: an evolutionary perspective
.
Evol. Med. Public Health
2016
,
170
176
[PubMed]
96.
Jankowsky
J.L.
and
Zheng
H.
(
2017
)
Practical considerations for choosing a mouse model of Alzheimer’s disease
.
Mol. Neurodegener.
12
,
89
[PubMed]
97.
Yue
F.
et al.
(
2014
)
A comparative encyclopedia of DNA elements in the mouse genome
.
Nature
515
,
355
364
[PubMed]
98.
Hodge
R.D.
et al.
(
2019
)
Conserved cell types with divergent features in human versus mouse cortex
.
Nature
573
,
61
68
[PubMed]
99.
Li
J.
et al.
(
2021
)
Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes
.
Nat. Commun.
12
,
3958
[PubMed]
100.
Geirsdottir
L.
et al.
(
2019
)
Cross-species single-cell analysis reveals divergence of the primate microglia program
.
Cell
179
,
1609
1622
,
e16.
[PubMed]
101.
Mao
R.
et al.
(
2003
)
Global up-regulation of chromosome 21 gene expression in the developing down syndrome brain
.
Genomics
81
,
457
467
[PubMed]
102.
Olmos-Serrano
J.L.
et al.
(
2016
)
Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination
.
Neuron
89
,
1208
1222
[PubMed]
103.
Motte
J.
and
Williams
R.S.
(
1989
)
Age-related changes in the density and morphology of plaques and neurofibrillary tangles in Down syndrome brain
.
Acta Neuropathol. (Berl.)
77
,
535
546
104.
Lemere
C.
et al.
(
1996
)
Sequence of deposition of heterogeneous amyloid b-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation
.
Neurobiol. Dis.
3
,
16
32
105.
Iwatsubo
T.
et al.
(
1995
)
Amyloid protein A deposition A 42 43 precedes A 40 in down Syndrome
.
Ann. Neurol.
37
,
294
299
106.
Hof
P.R.
et al.
(
1995
)
Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome: quantitative regional analysis and comparison with Alzheimer’s disease
.
Arch. Neurol.
52
,
379
391
[PubMed]
107.
LeVine
H.
III
et al.
(
2017
)
Down syndrome: age-dependence of PiB binding in postmortem frontal cortex across the lifespan
.
Neurobiol. Aging
54
,
163
169
[PubMed]
108.
Sadowski
M.
et al.
(
1999
)
Entorhinal cortex of aged subjects with Down's syndrome shows severe neuronal loss caused by neurofibrillary pathology
.
Acta Neuropathol.
97
,
156
164
[PubMed]
109.
Gómez-Isla
T.
et al.
(
1996
)
Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease
.
J. Neurosci.
16
,
4491
4500
[PubMed]
110.
Coskun
P.E.
et al.
(
2010
)
Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and down syndrome dementia
.
J. Alzheimers Dis.
20
,
S293
S310
[PubMed]
111.
Wang
W.
et al.
(
2020
)
Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances
.
Mol. Neurodegener.
15
,
30
[PubMed]
112.
Wilcock
D.M.
et al.
(
2015
)
Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease
.
Neurobiol. Aging
36
,
2468
2474
[PubMed]
113.
Flores-Aguilar
L.
et al.
(
2020
)
Evolution of neuroinflammation across the lifespan of individuals with Down syndrome
.
Brain
143
,
3653
3671
[PubMed]
114.
Martini
A.C.
et al.
(
2020
)
Distribution of microglial phenotypes as a function of age and Alzheimer’s disease neuropathology in the brains of people with Down syndrome
.
Alzheimers Dement. (Amst.)
12
,
e12113
[PubMed]
115.
Iulita
M.F.
et al.
(
2016
)
An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: Relation to cognitive decline and longitudinal evaluation
.
Alzheimers Dement.
12
,
1132
1148
[PubMed]
116.
Pascoal
T.A.
et al.
(
2021
)
Microglial activation and tau propagate jointly across Braak stages
.
Nat. Med.
27
,
1592
1599
[PubMed]
117.
Aït Yahya-Graison
E.
et al.
(
2007
)
Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes
.
Am. J. Hum. Genet.
81
,
475
491
[PubMed]
118.
Mao
R.
et al.
(
2005
)
Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart
.
Genome Biol.
6
,
R107
[PubMed]
119.
Pelleri
M.C.
et al.
(
2018
)
Integrated quantitative transcriptome maps of human trisomy 21 tissues and cells
.
Front. Genet.
9
,
125
125
[PubMed]
120.
Hosoda
R.
et al.
(
1998
)
Quantification of modified amyloid β peptides in Alzheimer disease and Down syndrome brains
.
J. Neuropathol. Exp. Neurol.
57
,
1089
1095
[PubMed]
121.
FitzPatrick
D.R.
et al.
(
2002
)
Transcriptome analysis of human autosomal trisomy
.
Hum. Mol. Genet.
11
,
3249
3256
[PubMed]
122.
Sawa
M.
et al.
(
2021
)
Impact of increased APP gene dose in Down syndrome and the Dp16 mouse model
.
Alzheimers Dement.
1
32
[PubMed]
123.
Palmer
C.R.
et al.
(
2021
)
Altered cell and RNA isoform diversity in aging Down syndrome brains
.
Proc. Natl. Acad. Sci. U.S.A.
118
,
47
,
1
11
124.
Lawrence
E.
et al.
(
2020
)
The barriers and motivators to using human tissues for research: the views of UK-based biomedical researchers
.
Biopreserv. Biobank.
18
,
266
273
125.
(
2013
)
Realising the potential of stratified medicine
.
Academy of Medical Sciences
.
126.
Dubey
S.K.
et al.
(
2019
)
Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer’s disease
.
Cell. Mol. Neurobiol.
39
,
181
209
[PubMed]
127.
Milenkovic
I.
et al.
(
2018
)
GABA (A) receptor subunit deregulation in the hippocampus of human foetuses with Down syndrome
.
Brain Struct. Funct.
223
,
1501
1518
128.
Krishtal
J.
et al.
(
2017
)
In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells
.
PLoS ONE
12
,
e0186636
[PubMed]
129.
Matsumoto
K.
et al.
(
2006
)
Overexpression of amyloid precursor protein induces susceptibility to oxidative stress in human neuroblastoma SH-SY5Y cells
.
J. Neural Transm.
113
,
125
135
130.
Houck
A.L.
,
Hernández
F.
and
Ávila
J.
(
2016
)
A simple model to study tau pathology
.
J. Exp. Neurosci.
10
,
31
38
[PubMed]
131.
Li
S.
et al.
(
2018
)
DYRK1A interacts with histone acetyl transferase p300 and CBP and localizes to enhancers
.
Nucleic Acids Res.
46
,
11202
11213
[PubMed]
132.
Soppa
U.
et al.
(
2014
)
The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation
.
Cell Cycle
13
,
2084
2100
[PubMed]
133.
Tokuhiro
S.
et al.
(
1998
)
The presenilin 1 mutation (M146V) linked to familial Alzheimer’s disease attenuates the neuronal differentiation of NTera 2 cells
.
Biochem. Biophys. Res. Commun.
244
,
751
755
[PubMed]
134.
Mackic
J.B.
et al.
(
1998
)
Human blood-brain barrier receptors for Alzheimer’s 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer
.
J. Clin. Invest.
102
,
734
743
[PubMed]
135.
Bachmeier
C.
,
Mullan
M.
and
Paris
D.
(
2010
)
Characterization and use of human brain microvascular endothelial cells to examine β-amyloid exchange in the blood-brain barrier
.
Cytotechnology
62
,
519
529
[PubMed]
136.
Festoff
B.W.
et al.
(
2016
)
HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease
.
J. Neuroinflammation
13
,
194
[PubMed]
137.
Freese
C.
et al.
(
2014
)
A novel blood-brain barrier co-culture system for drug targeting of Alzheimer’s disease: establishment by using acitretin as a model drug
.
PLoS ONE
9
,
e91003
[PubMed]
138.
Kuo
Y.-C.
and
Tsao
C.-W.
(
2017
)
Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin
.
Int. J. Nanomed.
12
,
2857
2869
139.
Mu
Q.
et al.
(
2018
)
RIP140/PGC-1α axis involved in vitamin A-induced neural differentiation by increasing mitochondrial function
.
Artif. Cells Nanomed. Biotechnol.
46
,
806
816
[PubMed]
140.
Lim
S.
et al.
(
2017
)
Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells
.
Mol. Nutr. Food Res.
61
,
1600530
141.
Zheng
X.
et al.
(
2015
)
Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease
.
Pharm. Res.
32
,
3837
3849
[PubMed]
142.
Hwang
S.
et al.
(
2021
)
Consequences of aneuploidy in human fibroblasts with trisomy 21
.
Proc. Natl. Acad. Sci. U.S.A.
118
,
1
12
143.
Gimeno
A.
et al.
(
2014
)
Decreased cell proliferation and higher oxidative stress in fibroblasts from Down Syndrome fetuses. Preliminary study
.
Biochim. Biophys. Acta Mol. Basis Dis.
1842
,
116
125
144.
Piccoli
C.
et al.
(
2012
)
Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects
.
Hum. Mol. Genet.
22
,
1218
1232
[PubMed]
145.
Cataldo
A.M.
et al.
(
2008
)
Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects
.
Am. J. Pathol.
173
,
370
384
[PubMed]
146.
Bordi
M.
et al.
(
2019
)
mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy
.
Cell Death Dis.
10
,
563
[PubMed]
147.
Jiang
Y.
et al.
(
2019
)
Lysosomal dysfunction in Down syndrome is APP-dependent and mediated by APP-βCTF (C99)
.
J. Neurosci.
39
,
5255
5268
[PubMed]
148.
Colacurcio
D.J.
et al.
(
2018
)
Dysfunction of autophagy and endosomal-lysosomal pathways: roles in pathogenesis of Down syndrome and Alzheimer’s disease
.
Free Radic. Biol. Med.
114
,
40
51
[PubMed]
149.
Jiang
Y.
et al.
(
2010
)
Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition
.
Proc. Natl. Acad. Sci. U.S.A.
107
,
1630
1635
[PubMed]
150.
Busciglio
J.
and
Yankner
B.A.
(
1995
)
Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro
.
Nature
378
,
776
779
[PubMed]
151.
Busciglio
J.
et al.
(
2002
)
Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome
.
Neuron
33
,
677
688
[PubMed]
152.
Lu
J.
et al.
(
2011
)
Generation of neural stem cells from discarded human fetal cortical tissue
.
J. Vis Exp.
153.
Yin
X.J.
,
Ju
R.
and
Feng
Z.C.
(
2006
)
[Experimental study on growth, proliferation and differentiation of neural stem cell from subventricular zone of human fetal brain at different gestational age]
.
Zhonghua Er Ke Za Zhi
44
,
500
504
[PubMed]
154.
Bhattacharyya
A.
et al.
(
2009
)
A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells
.
Dev. Neurosci.
31
,
497
510
[PubMed]
155.
Esposito
G.
et al.
(
2008
)
Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury
.
Hum. Mol. Genet.
17
,
440
457
[PubMed]
156.
Avior
Y.
,
Sagi
I.
and
Benvenisty
N.
(
2016
)
Pluripotent stem cells in disease modelling and drug discovery
.
Nat. Rev. Mol. Cell Biol.
17
,
170
182
[PubMed]
157.
Bai
X.
(
2020
)
Stem cell-based disease modeling and cell therapy
.
Cells
9
,
2193
158.
Siller
R.
et al.
(
2013
)
Modelling human disease with pluripotent stem cells
.
Curr. Gene Ther.
13
,
99
110
[PubMed]
159.
Sharma
A.
et al.
(
2020
)
Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery
.
Cell Stem Cell
26
,
309
329
[PubMed]
160.
Tang
S.
et al.
(
2016
)
Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery
.
J. Med. Chem.
59
,
2
15
[PubMed]
161.
Singh
V.K.
et al.
(
2015
)
Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery
.
Front. Cell Dev. Biol.
3
,
1
18
[PubMed]
162.
Colman
A.
and
Dreesen
O.
(
2009
)
Pluripotent stem cells and disease modeling
.
Cell Stem Cell
5
,
244
247
[PubMed]
163.
Cao
L.
et al.
(
2015
)
Induced pluripotent stem cells for disease modeling and drug discovery in neurodegenerative diseases
.
Mol. Neurobiol.
52
,
244
255
[PubMed]
164.
Marchetto
M.C.
et al.
(
2011
)
Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises
.
Hum. Mol. Genet.
20
,
R109
R115
[PubMed]
165.
Rubin
L.L.
(
2008
)
Stem cells and drug discovery: the beginning of a new era?
Cell
132
,
549
552
[PubMed]
166.
Grskovic
M.
et al.
(
2011
)
Induced pluripotent stem cells — opportunities for disease modelling and drug discovery
.
Nat. Rev. Drug Discov.
10
,
915
929
167.
Chang
C.Y.
et al.
(
2020
)
Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening
.
Molecules
25
,
1
21
168.
Thomson
J.A.
(
1998
)
Embryonic stem cell lines derived from human blastocysts
.
Science
282
,
1145
1147
[PubMed]
169.
Biancotti
J.-C.
et al.
(
2010
)
Human embryonic stem cells as models for aneuploid chromosomal syndromes
.
Stem Cells
28
,
1530
1540
[PubMed]
170.
Halevy
T.
et al.
(
2016
)
Molecular characterization of down syndrome embryonic stem cells reveals a role for RUNX1 in neural differentiation
.
Stem Cell Rep.
7
,
777
786
[PubMed]
171.
Dumevska
B.
et al.
(
2016
)
Derivation of Trisomy 21 affected human embryonic stem cell line Genea053
.
Stem Cell Res.
16
,
500
502
[PubMed]
172.
Canzonetta
C.
et al.
(
2008
)
DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome
.
Am. J. Hum. Genet.
83
,
388
400
[PubMed]
173.
Wert
G.D.
and
Mummery
C.
(
2003
)
Human embryonic stem cells: research, ethics and policy
.
Hum. Reprod.
18
,
672
682
[PubMed]
174.
Lo
B.
and
Parham
L.
(
2009
)
Ethical issues in stem cell research
.
Endocr. Rev.
30
,
204
213
[PubMed]
175.
King
N.M.P.
and
Perrin
J.
(
2014
)
Ethical issues in stem cell research and therapy
.
Stem Cell Res. Ther.
5
,
85
[PubMed]
176.
Takahashi
K.
et al.
(
2007
)
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
.
Cell
131
,
861
872
[PubMed]
177.
Yu
J.
et al.
(
2007
)
Induced pluripotent stem cell lines derived from human somatic cells
.
Science
318
,
1917
1920
[PubMed]
178.
Park
I.-H.
et al.
(
2008
)
Generation of human-induced pluripotent stem cells
.
Nat. Protoc.
3
,
1180
1186
[PubMed]
179.
Park
I.-H.
et al.
(
2008
)
Reprogramming of human somatic cells to pluripotency with defined factors
.
Nature
451
,
141
146
[PubMed]
180.
Mungenast
A.E.
,
Siegert
S.
and
Tsai
L.H.
(
2016
)
Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells
.
Mol. Cell. Neurosci.
73
,
13
31
[PubMed]
181.
Arber
C.
,
Lovejoy
C.
and
Wray
S.
(
2017
)
Stem cell models of Alzheimer’s disease: progress and challenges
.
Alzheimers Res. Ther.
9
,
42
[PubMed]
182.
Essayan-Perez
S.
et al.
(
2019
)
Modeling Alzheimer’s disease with human iPS cells: advancements, lessons, and applications
.
Neurobiol. Dis.
130
,
104503
[PubMed]
183.
Gough
G.
et al.
(
2020
)
Modeling Down syndrome in cells: from stem cells to organoids
.
Prog. Brain Res.
251
,
55
90
[PubMed]
184.
Zhang
T.
et al.
(
2020
)
[Progress of research on induced pluripotent stem cell models for Down syndrome]
.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
37
,
1183
1185
[PubMed]
185.
Brigida
A.L.
and
Siniscalco
D.
(
2016
)
Induced pluripotent stem cells as a cellular model for studying Down Syndrome
.
J. Stem Cells Regen. Med.
12
,
54
60
[PubMed]
186.
Yagi
T.
et al.
(
2011
)
Modeling familial Alzheimer’s disease with induced pluripotent stem cells
.
Hum. Mol. Genet.
20
, 4530-4539,
4530
4539
187.
Israel
M.A.
et al.
(
2012
)
Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells
.
Nature
482
,
216
220
[PubMed]
188.
Chang
K.-H.
et al.
(
2019
)
Modeling Alzheimer’s disease by induced pluripotent stem cells carrying APP D678H mutation
.
Mol. Neurobiol.
56
,
3972
3983
[PubMed]
189.
Kondo
T.
et al.
(
2013
)
Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness
.
Cell Stem Cell
12
,
487
496
[PubMed]
190.
Duan
L.
et al.
(
2014
)
Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death
.
Mol. Neurodegener.
9
,
3
[PubMed]
191.
Ma
S.
et al.
(
2020
)
Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease
.
Mol. Neurodegener.
15
,
61
[PubMed]
192.
Muñoz
S.S.
et al.
(
2020
)
A simple differentiation protocol for generation of induced pluripotent stem cell-derived basal forebrain-like cholinergic neurons for Alzheimer’s disease and frontotemporal dementia disease modeling
.
Cells
9
,
2018
193.
Hernández-Sapiéns
M.A.
et al.
(
2020
)
A three-dimensional Alzheimer’s disease cell culture model using iPSC-derived neurons carrying A246E mutation in PSEN1
.
Front. Cell. Neurosci.
14
,
151
[PubMed]
194.
Israel
M.A.
and
Goldstein
L.S.
(
2011
)
Capturing Alzheimer’s disease genomes with induced pluripotent stem cells: prospects and challenges
.
Genome Med.
3
,
49
[PubMed]
195.
Liu
S.
et al.
(
2020
)
Reconstruction of Alzheimer’s disease cell model in vitro via extracted peripheral blood molecular cells from a sporadic patient
.
Stem Cells Int.
2020
,
1
10
196.
Mertens
J.
et al.
(
2021
)
Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients
.
Cell Stem Cell
28
,
1533
1548
197.
Meyer
K.
et al.
(
2019
)
REST and neural gene network dysregulation in iPSC models of Alzheimer’s disease
.
Cell Rep.
26
,
1112.e9
1127.e9
198.
Papadimitriou
C.
et al.
(
2018
)
3D culture method for Alzheimer’s disease modeling reveals interleukin-4 rescues Aβ42-induced loss of human neural stem cell plasticity
.
Dev. Cell
46
,
85.e8
101.e8
[PubMed]
199.
Penney
J.
,
Ralvenius
W.T.
and
Tsai
L.-H.
(
2020
)
Modeling Alzheimer’s disease with iPSC-derived brain cells
.
Mol. Psychiatry
25
,
148
167
[PubMed]
200.
Sullivan
S.E.
and
Young-Pearse
T.L.
(
2017
)
Induced pluripotent stem cells as a discovery tool for Alzheimer’s disease
.
Brain Res.
1656
,
98
106
[PubMed]
201.
Woodruff
G.
et al.
(
2013
)
The Presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells
.
Cell Rep.
5
,
974
985
[PubMed]
202.
Slanzi
A.
et al.
(
2020
)
In vitro models of neurodegenerative diseases
.
Front. Cell Dev. Biol.
8
,
1
18
203.
Park
I.-H.
et al.
(
2008
)
Disease-specific induced pluripotent stem cells
.
Cell
134
,
877
886
[PubMed]
204.
Tang
X.Y.
et al.
(
2021
)
DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome
.
J. Clin. Invest.
131
,
1
17
205.
Czermiński
J.T.
and
Lawrence
J.B.
(
2020
)
Silencing trisomy 21 with XIST in neural stem cells promotes neuronal differentiation
.
Dev. Cell
52
,
294.e3
308.e3
[PubMed]
206.
Ponroy Bally
B.
et al.
(
2020
)
Human iPSC-derived Down syndrome astrocytes display genome-wide perturbations in gene expression, an altered adhesion profile, and increased cellular dynamics
.
Hum. Mol. Genet.
29
,
785
802
[PubMed]
207.
Laan
L.
et al.
(
2020
)
DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors
.
Clin. Epigenetics
12
,
9
[PubMed]
208.
Xu
R.
et al.
(
2019
)
OLIG2 Drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down Syndrome
.
Cell Stem Cell
24
,
908.e8
926.e8
[PubMed]
209.
Sobol
M.
et al.
(
2019
)
Transcriptome and proteome profiling of neural induced pluripotent stem cells from individuals with Down Syndrome disclose dynamic dysregulations of key pathways and cellular functions
.
Mol. Neurobiol.
56
,
7113
7127
[PubMed]
210.
Chiang
J.C.
et al.
(
2018
)
Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro
.
Nat. Commun.
9
,
5180
[PubMed]
211.
Real
R.
et al.
(
2018
)
In vivo modeling of human neuron dynamics and Down syndrome
.
Science
362
,
[PubMed]
212.
Gonzalez
C.
et al.
(
2018
)
Modeling amyloid beta and tau pathology in human cerebral organoids
.
Mol. Psychiatry
23
,
2363
2374
[PubMed]
213.
Ovchinnikov
D.A.
et al.
(
2018
)
The impact of APP on Alzheimer-like pathogenesis and gene expression in Down Syndrome iPSC-derived neurons
.
Stem Cell Rep.
11
,
32
42
[PubMed]
214.
Araujo
B.H.S.
et al.
(
2018
)
Down Syndrome iPSC-derived astrocytes impair neuronal synaptogenesis and the mTOR pathway in vitro
.
Mol. Neurobiol.
55
,
5962
5975
[PubMed]
215.
Cao
S.Y.
et al.
(
2017
)
Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule
.
Sci. Rep.
7
,
3282
[PubMed]
216.
Hu
Y.
et al.
(
2016
)
Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells
.
J. Neurosci. Methods
266
,
42
49
[PubMed]
217.
Chang
C.-Y.
et al.
(
2015
)
N-butylidenephthalide attenuates Alzheimer’s disease-like cytopathy in Down Syndrome induced pluripotent stem cell-derived neurons
.
Sci. Rep.
5
,
8744
[PubMed]
218.
Murray
A.
et al.
(
2015
)
Brief report: isogenic induced pluripotent stem cell lines from an adult with mosaic down syndrome model accelerated neuronal ageing and neurodegeneration
.
Stem Cells
33
,
2077
2084
[PubMed]
219.
Chen
C.
et al.
(
2014
)
Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells
.
Nat. Commun.
5
,
4430
[PubMed]
220.
Hibaoui
Y.
et al.
(
2014
)
Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21
.
EMBO Mol. Med.
6
,
259
277
[PubMed]
221.
Jiang
J.
et al.
(
2013
)
Translating dosage compensation to trisomy 21
.
Nature
500
,
296
300
[PubMed]
222.
Briggs
J.A.
et al.
(
2013
)
Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology
.
Stem Cells
31
,
467
478
[PubMed]
223.
Lu
H.E.
et al.
(
2013
)
Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells
.
Exp. Cell. Res.
319
,
498
505
[PubMed]
224.
Shi
Y.
et al.
(
2012
)
A human stem cell model of early Alzheimer’s disease pathology in Down syndrome
.
Sci. Transl. Med.
4
,
124ra29
[PubMed]
225.
Huo
H.-Q.
et al.
(
2018
)
Modeling Down Syndrome with patient iPSCs reveals cellular and migration deficits of GABAergic neurons
.
Stem Cell Rep.
10
,
1251
1266
[PubMed]
226.
Weick
J.P.
et al.
(
2013
)
Deficits in human trisomy 21 iPSCs and neurons
.
Proc. Natl. Acad. Sci. U.S.A.
110
,
9962
9967
227.
Maclean
G.A.
et al.
(
2012
)
Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells
.
Proc. Natl. Acad. Sci. U.S.A.
109
,
17567
17572
[PubMed]
228.
Mou
X.
et al.
(
2012
)
Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome
.
Stem Cell Res. Ther.
3
,
14
[PubMed]
229.
Li
L.B.
et al.
(
2012
)
Trisomy correction in Down syndrome induced pluripotent stem cells
.
Cell Stem Cell
11
,
615
619
[PubMed]
230.
Kawatani
K.
et al.
(
2021
)
A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome
.
Commun. Biol.
4
,
1
15
[PubMed]
231.
Inoue
M.
et al.
(
2019
)
Autonomous trisomic rescue of Down syndrome cells
.
Lab. Invest.
99
,
885
897
[PubMed]
232.
Papavassiliou
P.
et al.
(
2015
)
Mosaicism for trisomy 21: a review
.
Am. J. Med. Genet. A
167
,
26
39
233.
Papavassiliou
P.
et al.
(
2009
)
The phenotype of persons having mosaicism for trisomy 21/Down syndrome reflects the percentage of trisomic cells present in different tissues
.
Am. J. Med. Genet. A
149A
,
573
583
234.
Hibaoui
Y.
et al.
(
2014
)
Data in brief: transcriptome analysis of induced pluripotent stem cells from monozygotic twins discordant for trisomy 21
.
Genom. Data
2
,
226
229
[PubMed]
235.
Gonzales
P.K.
et al.
(
2018
)
Transcriptome analysis of genetically matched human induced pluripotent stem cells disomic or trisomic for chromosome 21
.
PLoS ONE
13
,
e0194581
[PubMed]
236.
Ambasudhan
R.
et al.
(
2011
)
Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions
.
Cell Stem Cell
9
,
113
118
[PubMed]
237.
Salehi
A.
,
Ashford
J.W.
and
Mufson
E.J.
(
2016
)
The link between Alzheimer’s disease and Down syndrome. A historical perspective
.
Curr. Alzheimer Res.
13
,
2
6
[PubMed]
238.
Snyder
H.M.
et al.
(
2020
)
Further understanding the connection between Alzheimer’s disease and Down syndrome
.
Alzheimers Dement.
16
,
1065
1077
[PubMed]
239.
Hartley
D.
et al.
(
2015
)
Down syndrome and Alzheimer’s disease: common pathways, common goals
.
Alzheimers Dement.
11
,
700
709
240.
Karmiloff-Smith
A.
et al.
(
2016
)
The importance of understanding individual differences in Down syndrome
.
F1000Res.
5
,
F1000
,
Faculty Rev-389
[PubMed]
241.
Yang
J.
et al.
(
2016
)
Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy
.
Mol. Neurodegener.
11
,
39
39
[PubMed]
242.
Dashinimaev
E.B.
et al.
(
2017
)
Neurons derived from induced pluripotent stem cells of patients with Down Syndrome reproduce early stages of Alzheimer’s disease type pathology in vitro
.
J. Alzheimers Dis.
56
,
835
847
[PubMed]
243.
Berry
B.J.
et al.
(
2018
)
Advances and current challenges associated with the use of human induced pluripotent stem cells in modeling neurodegenerative disease
.
Cells Tissues Organs
205
,
331
349
[PubMed]
244.
Choi
S.H.
et al.
(
2014
)
A three-dimensional human neural cell culture model of Alzheimer’s disease
.
Nature
515
,
274
278
[PubMed]
245.
Zhang
D.
et al.
(
2014
)
A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons
.
Biomaterials
35
,
1420
1428
[PubMed]
246.
Kim
Y.H.
et al.
(
2015
)
A 3D human neural cell culture system for modeling Alzheimer’s disease
.
Nat. Protoc.
10
,
985
1006
[PubMed]
247.
Raja
W.K.
et al.
(
2016
)
Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes
.
PLoS ONE
11
,
e0161969
[PubMed]
248.
Park
J.
et al.
(
2018
)
A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease
.
Nat. Neurosci.
21
,
941
951
[PubMed]
249.
Hoshino
A.
et al.
(
2019
)
Synchrony and asynchrony between an epigenetic clock and developmental timing
.
Sci. Rep.
9
,
3770
3770
[PubMed]
250.
Horvath
S.
et al.
(
2015
)
Accelerated epigenetic aging in Down syndrome
.
Aging Cell
14
,
491
495
[PubMed]
251.
Zhang
Y.
et al.
(
2013
)
Rapid single-step induction of functional neurons from human pluripotent stem cells
.
Neuron
78
,
785
798
[PubMed]
252.
Vierbuchen
T.
et al.
(
2010
)
Direct conversion of fibroblasts to functional neurons by defined factors
.
Nature
463
,
1035
1041
[PubMed]
253.
Yang
N.
et al.
(
2011
)
Induced neuronal cells: how to make and define a neuron
.
Cell Stem Cell
9
,
517
525
[PubMed]
254.
Chanda
S.
et al.
(
2014
)
Generation of induced neuronal cells by the single reprogramming factor ASCL1
.
Stem Cell Rep.
3
,
282
296
[PubMed]
255.
Pfisterer
U.
et al.
(
2011
)
Direct conversion of human fibroblasts to dopaminergic neurons
.
Proc. Natl. Acad. Sci. U.S.A.
108
,
10343
10348
256.
Caiazzo
M.
et al.
(
2011
)
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts
.
Nature
476
,
224
227
[PubMed]
257.
Yoo
A.S.
et al.
(
2011
)
MicroRNA-mediated conversion of human fibroblasts to neurons
.
Nature
476
,
228
231
[PubMed]
258.
Torper
O.
et al.
(
2013
)
Generation of induced neurons via direct conversion in vivo
.
Proc. Natl. Acad. Sci. U.S.A.
110
,
7038
7043
259.
Lee
H.
et al.
(
2020
)
Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model
.
eLife
9
,
e52069
[PubMed]
260.
Son
E.Y.
et al.
(
2011
)
Conversion of mouse and human fibroblasts into functional spinal motor neurons
.
Cell Stem Cell
9
,
205
218
[PubMed]
261.
Marro
S.
et al.
(
2011
)
Direct lineage conversion of terminally differentiated hepatocytes to functional neurons
.
Cell Stem Cell
9
,
374
382
[PubMed]
262.
Mertens
J.
et al.
(
2018
)
Aging in a dish: iPSC-derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases
.
Annu. Rev. Genet.
52
,
271
293
[PubMed]
263.
Vadodaria
K.C.
et al.
(
2016
)
Generation of functional human serotonergic neurons from fibroblasts
.
Mol. Psychiatry
21
,
49
61
[PubMed]
264.
Liu
M.-L.
et al.
(
2013
)
Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons
.
Nat. Commun.
4
,
2183
2183
[PubMed]
265.
Blanchard
J.W.
et al.
(
2015
)
Selective conversion of fibroblasts into peripheral sensory neurons
.
Nat. Neurosci.
18
,
25
35
[PubMed]
266.
Pang
Z.P.
et al.
(
2011
)
Induction of human neuronal cells by defined transcription factors
.
Nature
476
,
220
223
[PubMed]
267.
Mollinari
C.
et al.
(
2018
)
Transdifferentiation: a new promise for neurodegenerative diseases
.
Cell Death Dis.
9
,
830
[PubMed]
268.
Mollinari
C.
and
Merlo
D.
(
2021
)
Direct reprogramming of somatic cells to neurons: pros and cons of chemical approach
.
Neurochem. Res.
46
,
1330
1336
[PubMed]
269.
D’Souza
G.X.
et al.
(
2021
)
The application of in vitro-derived human neurons in neurodegenerative disease modeling
.
J. Neurosci. Res.
99
,
124
140
[PubMed]
270.
Hulme
A.J.
et al.
(
2022
)
Making neurons, made easy: the use of Neurogenin-2 in neuronal differentiation
.
Stem Cell Rep.
17
,
14
34
[PubMed]
271.
Lagomarsino
V.N.
et al.
(
2021
)
Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors
.
Neuron
109
,
3402.e9
3420.e9
[PubMed]
272.
Mertens
J.
et al.
(
2015
)
Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects
.
Cell Stem Cell
17
,
705
718
[PubMed]
273.
Wang
C.
et al.
(
2017
)
Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening
.
Stem Cell Rep.
9
,
1221
1233
[PubMed]
274.
Wu
C.I.
et al.
(
2022
)
APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer’s pathology in trisomy 21 neurons
.
Mol. Psychiatry
1
20
275.
Hirata
K.
et al.
(
2020
)
4-Phenylbutyrate ameliorates apoptotic neural cell death in Down syndrome by reducing protein aggregates
.
Sci. Rep.
10
,
14047
[PubMed]
276.
Goldman
J.P.
et al.
(
1998
)
Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain
.
Br. J. Haematol.
103
,
335
342
[PubMed]
277.
Chakrabarti
L.
et al.
(
2010
)
Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome
.
Nat. Neurosci.
13
,
927
934
[PubMed]
278.
Espuny-Camacho
I.
et al.
(
2017
)
Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain
.
Neuron
93
,
1066.e8
1081.e8
[PubMed]
279.
Hasselmann
J.
et al.
(
2019
)
Development of a chimeric model to study and manipulate human microglia in vivo
.
Neuron
103
,
1016.e10
1033.e10
[PubMed]
280.
Manley
W.F.
and
Anderson
S.A.
(
2019
)
Dosage counts: correcting Trisomy-21-related phenotypes in human organoids and xenografts
.
Cell Stem Cell
24
,
835
836
[PubMed]
281.
Mancuso
R.
et al.
(
2019
)
Stem-cell-derived human microglia transplanted in mouse brain to study human disease
.
Nat. Neurosci.
22
,
2111
2116
[PubMed]
282.
Saito
M.
et al.
(
2001
)
Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice
.
Nat. Biotechnol.
19
,
746
750
[PubMed]
283.
Walsh
S.
et al.
(
2021
)
Aducanumab for Alzheimer’s disease?
BMJ
374
,
n1682
[PubMed]
284.
Knopman
D.S.
and
Perlmutter
J.S.
(
2021
)
Prescribing aducanumab in the face of meager efficacy and real risks
.
Neurology
97
,
545
[PubMed]
285.
Nolan
G.P.
(
2007
)
What’s wrong with drug screening today
.
Nat. Chem. Biol.
3
,
187
191
[PubMed]
286.
Hunsberger
J.G.
et al.
(
2015
)
Induced pluripotent stem cell models to enable in vitro models for screening in the central nervous system
.
Stem Cells Dev.
24
,
1852
1864
[PubMed]
287.
Qian
L.
and
Julia
T.C.W.
(
2021
)
Human iPSC-based modeling of central nerve system disorders for drug discovery
.
Int. J. Mol. Sci.
22
,
1203
[PubMed]
288.
Kondo
T.
et al.
(
2017
)
iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease
.
Cell Rep.
21
,
2304
2312
[PubMed]
289.
Miller
J.D.
et al.
(
2013
)
Human iPSC-based modeling of late-onset disease via progerin-induced aging
.
Cell Stem Cell
13
,
691
705
[PubMed]
290.
Sullivan
S.
et al.
(
2018
)
Quality control guidelines for clinical-grade human induced pluripotent stem cell lines
.
Regen. Med.
13
,
859
866
[PubMed]
291.
Volpato
V.
et al.
(
2018
)
Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: a multi-site omics study
.
Stem Cell Rep.
11
,
897
911
[PubMed]
292.
Alessandrini
M.
et al.
(
2019
)
Stem cell therapy for neurological disorders
.
S. Afr. Med. J.
109
,
70
77
[PubMed]
293.
McGinley
L.M.
et al.
(
2018
)
Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease
.
Sci. Rep.
8
,
14776
[PubMed]
294.
Liu
Y.
et al.
(
2013
)
Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits
.
Nat. Biotechnol.
31
,
440
447
[PubMed]
295.
Bissonnette
C.J.
et al.
(
2011
)
The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells
.
Stem Cells
29
,
802
811
[PubMed]
296.
Yue
W.
et al.
(
2015
)
ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models
.
Stem Cell Rep.
5
,
776
790
[PubMed]
297.
Berger
I.
et al.
(
2016
)
Global distribution of businesses marketing stem cell-based interventions
.
Cell Stem Cell
19
,
158
162
[PubMed]
298.
Coghlan
A.
(
2017
)
Clinic claims it has used stem cells to treat Down’s syndrome
.
New Scientist
3111
,
mg23331113-900
299.
Shroff
G.
(
2016
)
Human embryonic stem cells in the treatment of patients with Down Syndrome: a case report
.
J. Med. Cases
2016
,
123
125
300.
Ebert
A.D.
,
Liang
P.
and
Wu
J.C.
(
2012
)
Induced pluripotent stem cells as a disease modeling and drug screening platform
.
J. Cardiovasc. Pharmacol.
60
,
408
416
[PubMed]
301.
Aerts
L.
et al.
(
2022
)
Do we still need animals? Surveying the role of animal-free models in Alzheimer’s and Parkinson’s disease research
.
EMBO J
e110002
,
302.
Rowland
H.A.
,
Hooper
N.M.
and
Kellett
K.A.B.
(
2018
)
Modelling sporadic Alzheimer’s disease using induced pluripotent stem cells
.
Neurochem. Res.
43
,
2179
2198
[PubMed]
303.
Doss
M.X.
and
Sachinidis
A.
(
2019
)
Current challenges of iPSC-based disease modeling and therapeutic implications
.
Cells
8
,
[PubMed]
,
This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Open access for this article was enabled by the participation of MRC Laboratory of Molecular Biology in an all-inclusive Read & Publish agreement with Portland Press and the Biochemical Society under a transformative agreement with JISC.